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In matters of great importance that have financial, medical,
social, or other implications, we often seek a second opinion
before making a decision, sometimes a third, and sometimes
many more. In doing so, we weigh the individual opinions, and
combine them through some thought process to reach a final
decision that is presumably the most informed one. The
process of consulting “several experts” before making a final
decision is perhaps second nature to us; yet, the extensive
benefits of such a process in automated decision making
applications have only recently been discovered by computa-
tional intelligence community.

Also known under various other names, such as multiple
classifier systems, committee of classifiers, or mixture of
experts, ensemble based systems have shown to produce
favorable results compared to those of single-expert sys-
tems for a broad range of applications and under a variety of
scenarios. Design, implementation and application of such
systems are the main topics of this article. Specifically, this
paper reviews conditions under which ensemble based sys-

tems may be more beneficial than their single classifier
counterparts, algorithms for generating individual compo-
nents of the ensemble systems, and various procedures
through which the individual classifiers can be combined. We
discuss popular ensemble based algorithms, such as bagging,
boosting, AdaBoost, stacked generalization, and hierarchical
mixture of experts; as well as commonly used combination
rules, including algebraic combination of outputs, voting
based techniques, behavior knowledge space, and decision
templates. Finally, we look at current and future research
directions for novel applications of ensemble systems. Such
applications include incremental learning, data fusion, fea-
ture selection, learning with missing features, confidence
estimation, and error correcting output codes; all areas in
which ensemble systems have shown great promise.
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classifier fusion, classifier selection, classifier diversity,
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1. Introduction

1.1. I’d Iike to Ask the Audience, Please. . .
A popular game show, aired in over 70 countries since
1999, drew the attention of hundreds of millions of TV
viewers around the world. The novelty of the show was
not so much in the talent it sought from the contestants;
just like many of its predecessors, the show quizzed the
knowledge of its contestants on a series of increasingly
non-trivial topics. What made the show so popular was its
previously unheard of large payout, but at the same time
its rather unorthodox use of so-called “lifelines.” If the
contestant did not know the answer to the question, s/he
could elect to have two incorrect answers be removed
from the four possible choices, telephone a friend whom
s/he thought to be knowledgeable on the subject matter,
or simply poll the audience. The idea of giving such choic-
es to the contestants was so intriguing that the question
“which of the three choices is the best one for any given
condition?” became a topic of light hearted conversation
among many statistics and computational intelligence
researchers. 

The reader undoubtedly realizes where we are going
with this: this article is about ensemble systems, and one
of those three choices includes the use of an ensemble of
decision makers: the audience. We will show that under
relatively mild assumptions, asking the audience is in fact
the best solution, and these assumptions provide clues
for the specific scenarios in which ensemble systems may
provide a clear advantage over single-expert systems.

As discussed below, there are several mathematically
sound reasons for considering ensemble systems, but the
intrinsic connection to our daily life experiences provides
an undeniably strong psychological pretext: we use them
all the time! Seeking additional opinions before making a
decision is an innate behavior for most of us, particularly
if the decision has important financial, medical or social
consequences. Asking different doctors’ opinions before
undergoing a major surgery, reading user reviews before
purchasing a product, or requesting references before hir-
ing someone are just a few of countless number of exam-
ples where we consider the decisions of multiple experts
in our daily lives. Our goal in doing so, of course, is to
improve our confidence that we are making the right deci-
sion, by weighing various opinions, and combining them
through some thought process to reach a final decision.
Why not, then, follow the same process, and ask the opin-
ion of additional experts in data analysis and automated
decision making applications? Ensemble systems follow
exactly such an approach to data analysis, and the

design, implementation and applications of such systems
constitute the main focus of this paper.

In this paper, the terms expert, classifier and hypothesis
are used interchangeably: the goal of an expert is to make
a decision, by choosing one option from a previously
defined set of options. This process can be cast as a clas-
sification problem: the expert (classifier) makes a hypoth-
esis about the classification of a given data instance into
one of predefined categories that represent different deci-
sions. The decision is based on prior training of the clas-
sifier, using a set of representative training data, for which
the correct decisions are a priori known.

1.2. Reasons for Using Ensemble Based Systems
There are several theoretical and practical reasons why
we may prefer an ensemble system: 

Statistical Reasons: Readers familiar with neural net-
works or other automated classifiers are painfully aware
that good performance on training data does not predict
good generalization performance, defined as the per-
formance of the classifier on data not seen during train-
ing. A set of classifiers with similar training
performances may have different generalization per-
formances. In fact, even classifiers with similar general-
ization performances may perform differently in the
field, particularly if the test dataset used to determine
the generalization performance is not sufficiently repre-
sentative of the future field data. In such cases, combin-
ing the outputs of several classifiers by averaging may
reduce the risk of an unfortunate selection of a poorly
performing classifier. The averaging may or may not
beat the performance of the best classifier in the ensem-
ble, but it certainly reduces the overall risk of making a
particularly poor selection. This is precisely the reason
we consult the opinions of other experts: having several
doctors agree on a diagnosis, or several former users
agree on the quality (or lack thereof) of a product,
reduces the risk of following the advice of a single doc-
tor (or a single user) whose specific experience may be
significantly different than those of others.

Large Volumes of Data: In certain applications, the
amount of data to be analyzed can be too large to be
effectively handled by a single classifier. For example,
inspection of gas transmission pipelines using magnetic
flux leakage techniques generates 10 GB of data for
every 100 km of pipeline, of which there are over 2 mil-
lion km. Training a classifier with such a vast amount of
data is usually not practical; partitioning the data into
smaller subsets, training different classifiers with differ-
ent partitions of data, and combining their outputs using
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an intelligent combination rule often proves to be a
more efficient approach.

Too Little Data: Ensemble systems can also be used
to address the exact opposite problem of having too lit-
tle data. Availability of an adequate and representative
set of training data is of paramount importance for a
classification algorithm to successfully learn the under-
lying data distribution. In the absence of adequate train-
ing data, resampling techniques can be used for drawing
overlapping random subsets of the available data, each
of which can be used to train a different classifier, creat-
ing the ensemble. Such approaches have also proven to
be very effective.

Divide and Conquer: Regardless of the amount of
available data, certain problems are just too difficult for
a given classifier to solve. More specifically, the decision
boundary that separates data from different classes may
be too complex, or lie outside the space of functions

that can be implemented by the chosen classifier model.
Consider the two dimensional, two-class problem with a
complex decision boundary depicted in Figure 1. A lin-
ear classifier, one that is capable of learning linear
boundaries, cannot learn this complex non-linear
boundary. However, appropriate combination of an
ensemble of such linear classifiers can learn this (or any
other, for that matter) non-linear boundary. 

As an example, let us assume that we have access to
a classifier model that can generate elliptic/circular
shaped boundaries. Such a classifier cannot learn the
boundary shown in Figure 1. Now consider a collection
of circular decision boundaries generated by an ensem-
ble of such classifiers as shown in Figure 2, where each
classifier labels the data as class1 (O) or class 2 (X),
based on whether the instances fall within or outside of
its boundary. A decision based on the majority voting of
a sufficient number of such classifiers can easily learn
this complex non-circular boundary. In a sense, the clas-
sification system follows a divide-and-conquer approach
by dividing the data space into smaller and easier-to-
learn partitions, where each classifier learns only one of
the simpler partitions. The underlying complex decision
boundary can then be approximated by an appropriate
combination of different classifiers.

Data Fusion: If we have several sets of data obtained
from various sources, where the nature of features are
different (heterogeneous features), a single classifier
cannot be used to learn the information contained in all
of the data. In diagnosing a neurological disorder, for
example, the neurologist may order several tests, such
as an MRI scan, EEG recording, blood tests, etc. Each
test generates data with a different number and type of
features, which cannot be used collectively to train a
single classifier. In such cases, data from each testing
modality can be used to train a different classifier,
whose outputs can then be combined. Applications in
which data from different sources are combined to make
a more informed decision are referred to as data fusion
applications, and ensemble based approaches have suc-
cessfully been used for such applications.

There are many other scenarios in which ensemble
base systems can be very beneficial; however, discussion
on these more specialized scenarios require a deeper
understanding of how, why and when ensemble systems
work. The rest of this paper is therefore organized as fol-
lows. In Section 2, we discuss some of the seminal work
that has paved the way for today’s active research area in
ensemble systems, followed by a discussion on diversity,
a keystone and a fundamental strategy shared by all
ensemble systems. We close Section 2 by pointing out
that all ensemble systems must have two key compo-
nents: an algorithm to generate the individual classifiers
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Complex Decision
Boundary to Be Learned

OO

Figure 1. Complex decision boundary that cannot be learned
by linear or circular classifiers. 
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Figure 2. Ensemble of classifiers spanning the decision
space. 



of the ensemble, and a method for combining the outputs
of these classifiers. Various algorithms for the former are
discussed in Section 3, whereas different procedures for
the latter are discussed in Section 4. In Section 5, we look
at current and emerging directions in ensemble system
research, including some novel applications, for which
the ensemble systems are naturally suited. Section 6 com-
pletes our overview of ensemble systems with some con-
cluding remarks.

2. Ensemble Based Systems

2.1. A Brief History of Ensemble Systems
Perhaps one of the earliest work on ensemble systems is
Dasarathy and Sheela’s 1979 paper [1], which discusses
partitioning the feature space using two or more classi-
fiers. In 1990, Hansen and Salamon showed that the gener-
alization performance of a neural network can be improved
using an ensemble of similarly configured neural net-
works.[2], while Schapire proved that a strong classifier in
probably approximately correct (PAC) sense can be gener-
ated by combining weak classifiers through boosting [3],
the predecessor of the suite of AdaBoost algorithms. Since
these seminal works, research in ensemble systems have
expanded rapidly, appearing often in the literature under
many creative names and ideas. The long list includes com-
posite classifier systems [1], mixture of experts [4], [5],
stacked generalization [6], consensus aggregation [7],
combination of multiple classifiers [8]–[12], change-glass-
es approach to classifier selection [13], dynamic classifier
selection [12], classifier fusion [14]–[16], committees of
neural networks [17], voting pool of classifiers [18], classi-
fier ensembles [17], [19], and pandemonium system of
reflective agents [20], among many others.

The paradigms of these approaches usually differ from
each other with respect to the specific procedure used
for generating individual classifiers, and/or the strategy
employed for combining the classifiers. There are gener-
ally two types of combination: classifier selection and
classifier fusion [12], [21]. In classifier selection, each clas-
sifier is trained to become an expert in some local area of
the total feature space (as in Figure 2). The combination
of the classifiers is then based on the given feature vec-
tor: the classifier trained with data closest to the vicinity
of the feature vector, in some distance metric sense, is
given the highest credit. One or more local experts can be
nominated to make the decision [4], [12], [22–24]. In clas-
sifier fusion, however, all classifiers are trained over the
entire feature space. In this case, the classifier combina-
tion process involves merging the individual (weaker)
classifier designs to obtain a single (stronger) expert of
superior performance. Examples of this approach include
bagging predictors [25], boosting [3], [26] and its many

variations. The combination may apply to classification
labels only, or to the class-specific continuous valued out-
puts of the individual experts [16], [27], [28]. In the latter
case, classifier outputs are often normalized to the [0, 1]
interval, and these values are interpreted as the support
given by the classifier to each class, or even as class-con-
ditional posterior probabilities [16], [29]. Such interpre-
tation allows forming an ensemble through algebraic
combination rules (majority voting, maximum/mini-
mum/sum/product or other combinations of posterior
probabilities) [9], [28], [30], [31], fuzzy integral for com-
bination [15], [32], [33], the Dempster-Shafer based clas-
sifier fusion [10], [34], and more recently, the decision
templates [16], [27], [30], [35]–[37].

In other related efforts, input decimation has been pro-
posed for naturally grouping different modalities for inde-
pendent classifiers in [38], [39], and the conditions under
which such combination of modalities work best is
described in [40]. A number of authors have provided
theoretical analyses of various strategies commonly used
in multiple expert fusion: for example, theoretical models
were developed in [41], [42] for combining discriminant
functions; six commonly used combination rules were
compared for their ability to predict posterior probabili-
ties in [31]; and a Bayesian theoretical framework for mul-
tiple expert fusion was developed in [28], where the
sensitivity of various combination schemes to estimation
errors was analyzed to propose a plausible model that
explains such behavior.

A sample of the immense literature on classifier com-
bination can be found in Kuncheva’s recent book [21], the
first text devoted to theory and implementation of ensem-
ble based classifiers, and references therein. The field has
been developing so rapidly that an international work-
shop on multiple classifier systems (MCS) has recently
been established, and the most current developments
can be found in its proceedings [43].

2.2. Diversity: Cornerstone of Ensemble Systems
If we had access to a classifier with perfect generalization
performance, there would be no need to resort to ensem-
ble techniques. The realities of noise, outliers and over-
lapping data distributions, however, make such a
classifier an impossible proposition. At best, we can hope
for classifiers that correctly classify the field data most of
the time. The strategy in ensemble systems is therefore to
create many classifiers, and combine their outputs such
that the combination improves upon the performance of
a single classifier. This requires, however, that individual
classifiers make errors on different instances. The intu-
ition is that if each classifier makes different errors, then
a strategic combination of these classifiers can reduce
the total error, a concept not too dissimilar to low pass
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filtering of the noise. The overarching principal in ensem-
ble systems is therefore to make each classifier as unique
as possible, particularly with respect to misclassified
instances. Specifically, we need classifiers whose decision
boundaries are adequately different from those of others.
Such a set of classifiers is said to be diverse.

Classifier diversity can be achieved in several ways.
The most popular method is to use different training
datasets to train individual classifiers. Such datasets are
often obtained through resampling techniques, such as
bootstrapping or bagging, where training data subsets
are drawn randomly, usually with replacement, from the
entire training data. This is illustrated in Figure 3, where
random and overlapping training data subsets are select-
ed to train three classifiers, which then form three differ-
ent decision boundaries. These boundaries are combined
to obtain a more accurate classification.

To ensure that individual boundaries are adequately
different, despite using substantially similar training

data, unstable classifiers are used as base models, since
they can generate sufficiently different decision bound-
aries even for small perturbations in their training
parameters. If the training data subsets are drawn with-
out replacement, the procedure is also called jackknife
or k-fold data split: the entire dataset is split into k
blocks, and each classifier is trained only on k-1 of them.
A different subset of k blocks is selected for each classi-
fier as shown in Figure 4.

Another approach to achieve diversity is to use dif-
ferent training parameters for different classifiers. For
example, a series of multilayer perceptron (MLP) neural
networks can be trained by using different weight initial-
izations, number of layers/nodes, error goals, etc. Adjust-
ing such parameters allows one to control the instability
of the individual classifiers, and hence contribute to
their diversity. The ability to control the instability of
neural network and decision tree type classifiers make
them suitable candidates to be used in an ensemble
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Figure 3. Combining classifiers that are trained on different subsets of the training data.



setting. Alternatively, entirely different type of classifiers,
such MLPs, decision trees, nearest neighbor classifiers,
and support vector machines can also be combined for
added diversity. However, combining different models,
or even different architectures of the same model, is
used only for specific applications that warrant them.
Diversity is typically obtained through resampling of the
training data, as this procedure is theoretically more
tractable. Finally, diversity can also be achieved by using
different features. In fact, generating different classifiers
using random feature subsets is known as the random
subspace method [44], and it has found widespread use in
certain applications, which are discussed later in future
research areas.

2.3. Measures of Diversity
Several measures have been defined for quantitative
assessment of diversity. The simplest ones are pair-wise
measures, defined between two classifiers. For T classi-
fiers, we can calculate T(T -1)/2 pair-wise diversity meas-
ures, and an overall diversity of the ensemble can be
obtained by averaging these pair-wise measures. Given
two hypotheses hi and hj, we use the notations 

where a is the fraction of instances that are correctly clas-
sified by both classifiers, b is the fraction of instances
correctly classified by hi but incorrectly classified by hj,
and so on. Of course, a+b + c+d = 1. Then, the following
pair-wise diversity measures can be defined:
Correlation Diversity is measured as the correlation
between two classifier outputs, defined as

ρi, j = ad − bc√
(a + b) (c + d) (a + c) (b + d)

, 0 ≤ ρ ≤ 1. (1)

Maximum diversity is obtained for ρ = 0, indicating that
the classifiers are uncorrelated.
Q-Statistic Defined as

Qi, j = (ad − bc)/(ad + bc) (2)

Q assumes positive values if the same instances are cor-
rectly classified by both classifiers; and negative values,
otherwise. Maximum diversity is, once again, obtained
for Q= 0.
Disagreement and Double Fault Measures The disagree-
ment is the probability that the two classifiers will dis-
agree, whereas the double fault measure is the
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probability that both classifiers are incorrect. The diver-
sity increases with both the disagreement and the double
fault value.

Di, j = b + c, (3)

DFi, j = d. (4)

There are also non pair-wise measures that take the
ensemble’s decision into consideration.
Entropy Measure makes the assumption that the diversity
is highest if half of the classifiers are correct, and the
remaining ones are incorrect. Based on this assumption,
and defining ζi as the number of classifiers, out of T , that
misclassifies instance xi, the entropy measure is defined as

E = 1
N

N∑

i=1

1
T − �T/2� min {ζi, (T − ζi)} (5)

where �·� is the ceiling operator, and N is the dataset car-
dinality. Entropy varies between 0 and 1: 0 indicates that
all classifiers are practically the same, and 1 indicates
highest diversity [45].
Kohavi–Wolpert Variance defined as

KW = 1
NT2

N∑

i=1

ζi · (T − ζi) (6)

follows a similar approach to the disagreement measure,
and can be shown to be related to the disagreement meas-
ure averaged over all classifiers by a constant factor [45].
Measure of difficulty, originally proposed in [2], uses the
random variable Z (xi) = {0, 1/T, 2/T, · · · , 1}, defined as
the fraction of classifiers that misclassify xi. The measure of
difficulty, θ , is then the variance of the random variable Z :

θ = 1
T

T∑

t=0

(zt − z̄)2 (7)

where z̄ is the mean of z; hence it is the average fraction of
classifiers that misclassify any given input. Hansen and Sala-
mon argue that if classifiers are positively correlated, that is,
they all tend to correctly classify the same instances, and
misclassify same other instances, then θ is large and there is
little diversity. In the extreme case, where all classifiers are
identical, the distribution of Z will be two singletons: one at
0, with a mass proportional to the number of missed
instances, and the other at 1, with a mass proportional to the
number of correctly classified instances. Then, Z attains its
maximum value. However, if classifiers are negatively corre-
lated, that is, they tend to misclassify different instances,
then θ is relatively small, and there is more diversity.

Several other diversity measures have also been pro-
posed, such as measurement of interrater agreement or

generalized diversity, whose comparisons can be found in
[45], [46]. Kuncheva’s conclusion, reminiscent of the No
Free Lunch theorem (which states that no classification
algorithm is universally superior to others [47]), is that
there is no diversity measure that consistently correlates
with higher accuracy. In the absence of additional infor-
mation, she suggests the Q statistic because of its intu-
itive meaning and simple implementation.

2.4. Two Key Components of an Ensemble System
All ensemble systems consist of two key components.
First, a strategy is needed to build an ensemble that is as
diverse as possible. Some of the more popular ones, such
as bagging, boosting, AdaBoost, stacked generalization,
and mixture of experts are discussed in Section 3. A sec-
ond strategy is needed to combine the outputs of indi-
vidual classifiers that make up the ensemble in such a
way that the correct decisions are amplified, and incor-
rect ones are cancelled out. Several choices are available
for this purpose as well, which are discussed in Section 4.

3. Creating an Ensemble

Two interrelated questions need to be answered in design-
ing an ensemble system: i) how will individual classifiers
(base classifiers) be generated? and ii) how will they differ
from each other? The answers ultimately determine the
diversity of the classifiers, and hence affect the perform-
ance of the overall system. Therefore, any strategy for gen-
erating the ensemble members must seek to improve the
ensemble’s diversity. In general, however, ensemble algo-
rithms do not attempt to maximize a specific diversity
measure (see [46], [48] for exceptions). Rather, increased
diversity is usually sought—somewhat heuristically—
through various resampling procedures or selection of dif-
ferent training parameters. The above defined diversity
measures can then be used to compare the diversities of
the ensembles generated by different algorithms.

3.1. Bagging
Breiman’s bagging, short for bootstrap aggregating, is one
of the earliest ensemble based algorithms. It is also one
of the most intuitive and simplest to implement, with a
surprisingly good performance [25]. Diversity in bagging
is obtained by using bootstrapped replicas of the train-
ing data: different training data subsets are randomly
drawn—with replacement—from the entire training
data. Each training data subset is used to train a differ-
ent classifier of the same type. Individual classifiers are
then combined by taking a majority vote of their deci-
sions. For any given instance, the class chosen by most
classifiers is the ensemble decision.

Bagging is particularly appealing when available data is
of limited size. To ensure that there are sufficient training
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samples in each subset, relatively large portions of the
samples (75% to 100%) are drawn into each subset. This
causes individual training subsets to overlap significantly,
with many of the same instances appearing in most sub-
sets, and some instances appearing multiple times in a
given subset. In order to ensure diversity under this sce-
nario, a relatively unstable model is used so that suffi-
ciently different decision boundaries can be obtained for
small perturbations in different training datasets. As men-
tioned above, neural networks and decision trees are good
candidates for this purpose, as their instability can be
controlled by the selection of their free parameters. The
pseudocode for the bagging algorithm is given in Figure 5.

3.2. Variations of Bagging
Random Forests: A variation of the bagging algorithm is
the Random Forests, so-called because it is constructed
from decision trees [49]. A random forest can be creat-
ed from individual decision trees, whose certain training
parameters vary randomly. Such parameters can be
bootstrapped replicas of the training data, as in bagging,
but they can also be different feature subsets as in ran-
dom subspace methods.
Pasting Small Votes: Unlike bagging, pasting small votes
is designed to be used with large datasets [50]. A large
dataset is partitioned into smaller subsets, called bites,
each of which is used to train a different classifier. Two
variations of pasting small votes have emerged: one that
creates the data subsets at random, called Rvotes, and
one that creates consecutive datasets based on the
importance of the instances, called Ivotes. 

The latter approach is known to provide better
results [51], and is similar to the approach followed by
boosting based algorithms, where each classifier focus-
es on most important (or most informative) instances for
the current ensemble member.

Basically, the important instances are those that
improve diversity; and one way to do so is to train each
classifier on a dataset that consists of a balanced distri-
bution of easy and difficult instances. This is achieved by
evaluating the current ensemble Et , consisting of t classi-
fiers, on instances that have not yet been used for train-
ing. For any given instance x, those classifiers that did
not use x in their training are called out-of-bag classifiers.
If x is misclassified by a simple majority vote of the cur-
rent ensemble, then it is automatically placed in the
training subset of the next classifier. Otherwise, it is still
placed in the training set, but only with probability ε t/(1–
ε t), where 0<εt <1/2 is the error of the tth classifier. Indi-
vidual classifiers are expected to perform at least 50% to
ensure that a meaningful performance can be provided
by each classifier. In Section 4, within the context of vot-
ing algorithms, we will see that the error threshold of 0.5

is in fact a strategically chosen value. The complete algo-
rithm for pasting small votes is given in Figure 6.

3.3. Boosting
In 1990, Schapire proved that a weak learner, an algo-
rithm that generates classifiers that can merely do better
than random guessing, can be turned into a strong learner
that generates a classifier that can correctly classify all
but an arbitrarily small fraction of the instances [3]. For-
mal definitions of weak and strong learner, as defined in
the PAC learning frame work, can be found in [3], where
Schapire also provides an elegant algorithm for boosting
the performance of a weak learner to the level of a strong
one. Hence called boosting, the algorithm is now consid-
ered as one of the most important developments in the
recent history of machine learning. 

Similar to bagging, boosting also creates an ensemble
of classifiers by resampling the data, which are then com-
bined by majority voting. However, similarities end there.
In boosting, resampling is strategically geared to provide
the most informative training data for each consecutive
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Algorithm: Bagging
Input:
■ Training data S with correct labels ωi

∈ �={ω1,...,ωC } representing C classes
■ Weak learning algorithm WeakLearn,
■ Integer T specifying number of iterations.
■ Percent (or fraction) F to create bootstrapped

training data
Do t = 1, . . . , T

1. Take a bootstrapped replica St by random-
ly drawing F percent of S.

2. Call WeakLearn with St and receive the
hypothesis (classifier) ht .

3. Add ht to the ensemble, E.
End
Test: Simple Majority Voting – Given unlabeled

instance x
1. Evaluate the ensemble E= {h1, . . . ,hT } on x.

2. Let vt, j =
{

1, if ht picks class ωj

0, otherwise
(8)

be the vote given to class ωj by classifier ht . 
3. Obtain total vote received by each class 

Vj =
∑T

t =1
vt, j ,  j= 1,. . . ,C (9)

4. Choose the class that receives the highest
total vote as the final classification.

Figure 5. The bagging algorithm.



classifier. In essence, boosting creates three weak classi-
fiers: the first classifier C1 is trained with a random sub-
set of the available training data. The training data subset
for the second classifier C2 is chosen as the most inform-
ative subset, given C1. That is, C2 is trained on a training
data only half of which is correctly classified by C1, and
the other half is misclassified. The third classifier C3 is
trained with instances on which C1and C2 disagree. The
three classifiers are combined through a three-way major-
ity vote. The algorithm is shown in detail in Figure 7.

Schapire has shown that the error of this three-classi-
fier ensemble is bounded above, and it is less than the
error of the best classifier in the ensemble, provided that
each classifier has an error rate that is less than 0.5. For a
two-class problem, an error rate of 0.5 is the least we can

expect from a classifier, as an error of 0.5 amounts to ran-
dom guessing. Hence, a stronger classifier is generated
from three weaker classifiers. A strong classifier in the
strict PAC learning sense can then be created by recur-
sive applications of boosting.

3.4. AdaBoost
In 1997, Freund and Schapire introduced AdaBoost [26],
which has since enjoyed a remarkable attention, one that
is rarely matched in computational intelligence.
AdaBoost is a more general version of the original boost-
ing algorithm. Among its many variations, AdaBoost.M1
and AdaBoost.R are more commonly used, as they are
capable of handling multiclass and regression problems,
respectively. In this paper, we discuss AdaBoost.M1 in
detail, and provide a brief survey and references for other
algorithms that are based on AdaBoost.
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Algorithm: Boosting
Input:
■ Training data S of size N with correct labels ωi

∈ �= {ω1, ω2};
■ Weak learning algorithm WeakLearn.
Training

1. Select N1<N patterns without replacement
from S to create data subset S1.

2. Call WeakLearn and train with S1 to create
classifier C1.

3. Create dataset S2 as the most informative
dataset, given C1, such that half of S2 is cor-
rectly classified by C2, and the other half is
misclassified. To do so:
a. Flip a fair coin. If Head, select samples from

S , and present them to C1 until the first
instance is misclassified. Add this instance
to S2.

b. If Tail, select samples from S , and present
them to C1 until the first one is correctly
classified. Add this instance to S2.

c. Continue flipping coins until no more pat-
terns can be added to S2.

4. Train the second classifier C2 with S2.
5. Create S3 by selecting those instances for

which C1 and C2 disagree. Train the third
classifier C3 with S3.

Test -- Given a test instance x
1. Classify x by C1 and C2. If they agree on the

class, this class is the final classification.
2. If they disagree, choose the class predicted

by C3 as the final classification.

Figure 7. The boosting algorithm.

Algorithm: Pasting Small Votes (Ivotes)
Input:
■ Training data S with correct labels ωi ∈ � =

{ω1,..., ωC } representing C classes;
■ Weak learning algorithm WeakLearn;
■ Integer T specifying number of iterations;
■ Bitesize M, indicating the size of individual train-

ing subsets to be created.
Initialize

1. Choose a random subset S0 of size M from S .
2. Call WeakLearn with S0, and receive the

hypothesis (classifier) h0.
3. Evaluate h0 on a validation dataset, and

obtain error ε0 of h0..
4. If ε0>1/2, return to step 1.

Do t=1, . . . , T
1. Randomly draw an instance x from S accord-

ing to uniform distribution.
2. Evaluate x using majority vote of out-of-bag

classifiers in the current ensemble Et .
3. If x is misclassified, place x in St . Otherwise,

place x in St with probability p

p = εt−1
(1−εt−1)

. (10)

Repeat Steps 1-3 until St has M such instances.
4. Call WeakLearn with St and receive the

hypothesis ht .
5. Evaluate ht on a validation dataset, and

obtain error εt of ht.. If εt>1/2, return to step
4.

6. Add ht to the ensemble to obtain Et .
End
Test -- Use simple majority voting on test data.

Figure 6. Pasting small votes (Ivotes) algorithm.



AdaBoost generates a set of hypotheses, and combines
them through weighted majority voting of the classes pre-
dicted by the individual hypotheses. The hypotheses are
generated by training a weak classifier, using instances
drawn from an iteratively updated distribution of the
training data. This distribution update ensures that
instances misclassified by the previous classifier are more
likely to be included in the training data of the next classi-
fier. Hence, consecutive classifiers’ training data are
geared towards increasingly hard-to-classify instances.

The pseudocode of the algorithm is provided in Fig-
ure 8. Several interesting features of the algorithm are
worth noting. The algorithm maintains a weight distribu-
tion Dt(i) on training instances xi, i = 1, . . . , N , from
which training data subsets St are chosen for each con-
secutive classifier (hypothesis) ht . The distribution is ini-
tialized to be uniform, so that all instances have equal
likelihood to be selected into the first training dataset.
The training error ε t of classifier ht is also weighted by
this distribution, such that ε t is the sum of distribution
weights of the instances misclassified by ht (Equation 12).
As before, we require that this error be less than 1/2. A
normalized error is then obtained as βt, such that for
< 0 εt < 1/2, we have 0 < βt < 1. 

Equation 14  describes the distribution update rule:
the distribution weights of those instances that are cor-
rectly classified by the current hypothesis are reduced by
a factor of βt , whereas the weights of the misclassified
instances are unchanged. When the updated weights are
renormalized, so that Dt+1 is a proper distribution, the
weights of the misclassified instances are effectively
increased. Hence, iteration by iteration, AdaBoost focus-
es on increasingly difficult instances. Note that AdaBoost
raises the weights of instanced misclassified by ht so that
they add up to 1/2, and lowers the weights of correctly
classified instances, so that they too add up to 1/2. Since
the base model learning algorithm WeakLearn is required
to have an error less than 1/2, it is guaranteed to cor-
rectly classify at least one previously misclassified train-
ing example. Once a preset T number of classifiers are
generated, AdaBoost is ready for classifying unlabeled
test instances. Unlike bagging or boosting, AdaBoost uses
a rather undemocratic voting scheme, called the weighted
majority voting. The idea is an intuitive one: those classi-
fiers that have shown good performance during training
are rewarded with higher voting weights than the others.
Recall that a normalized error βt was calculated in Equa-
tion 13. The reciprocal of this quantity, 1/βt is therefore a
measure of performance, and can be used to weight the
classifiers. Furthermore, since βt is training error, it is
often close to zero and 1/βt can therefore be a very large
number. To avoid potential instability that can be caused
by asymptotically large numbers, the logarithm of 

1/βt is usually used as the voting weight of ht . At the end,
the class that receives the highest total vote from all clas-
sifiers is the ensemble decision. 

A conceptual block diagram of the algorithm is provid-
ed in Figure 9. The diagram should be interpreted with the
understanding that the algorithm is sequential: classifier
C K is created before classifier C K+1, which in turn requires
that βK and the current distribution DK be available.

Freund and Schapire also showed that the training
error of AdaBoost.M1 is bounded above:

E < 2T
T∏

t=1

√
εt (1 − εt) (16)
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Algorithm AdaBoost.M1
Input:
■ Sequence of N examples S = [(xi, yi)], i = 1, · · · , N

with labels yi ∈ �, � = {ω1, . . . , ωC };
■ Weak learning algorithm WeakLearn;
■ Integer T specifying number of iterations.

Initialize D1 (i) = 1
N ., i = 1, · · · , N (11)

Do for t = 1, 2, . . . , T :
1. Select a training data subset St , drawn from

the distribution Dt .
2. Train WeakLearn with St , receive hypothe-

sis ht .
3. Calculate the error of 

ht : εt = ∑
i:ht(xi)�=yi

Dt(i). (12)

If εt >1/2, abort.
4. Set βt = εt/(1 − εt). (13)

5. Update distribution 

Dt : Dt+1(i) = Dt(i)
Zt

×
{

βt if ht(xi) = yi

1, otherwise
(14)

where Zt = ∑
i Dt (i) is a normalization con-

stant chosen so that Dt+1 becomes a proper
distribution function.

Test -- Weighted Majority Voting: Given an unla-
beled instance x,

1. Obtain total vote received by each class

Vj = ∑
t:ht(x)=ωj

log 1
βt

, j= 1,. . . ,C . (15)

2. Choose the class that receives the highest
total vote as the final classification. 

Figure 8. The AdaBoost.M1 algorithm.



where E is the ensemble error [26]. Since εt < 1/2 , E is
guaranteed to decrease with each new classifier. In most
practical cases, the error decreases very rapidly in the
first few iterations, and approaches zero as new classi-
fiers are added. While this is remarkable on its own
account, the surprising resistance of AdaBoost to over-
fitting is particularly noteworthy. Overfitting is a com-
monly observed phenomenon where the classifier
performs poorly on test data, despite achieving a very
small training error. Overfitting is usually attributed to
memorizing the data, or learning the noise in the data.
As a classifier’s capacity increases (for example, with
the complexity of its architecture), so does its tendency
to memorize the training data and/or learn the noise in
the data. Since the capacity of an ensemble increases
with each added classifier, one would expect AdaBoost
to suffer from overfitting, particularly if its complexity
exceeds what is necessary to learn the underlying data
distribution. Yet, AdaBoost performance usually levels
off with increasing number of classifiers with no indica-
tion of overfitting. 

Schapire et al. later provided an explanation to this
phenomenon based on the so-called margin theory [52].
The details of margin theory are beyond the scope of this
paper; however, the margin of an instance x, in loose
terms, is its distance from the decision boundary. The fur-
ther away an instance is from the boundary, the larger its
margin, and hence the higher the confidence of the clas-
sifier in correctly classifying this instance. Margins are
usually described within the context of support vector
machine (SVM) type classifiers, which are based on the
idea of maximizing the margins between the instances
and the decision boundary. In fact, SVMs find those
instances, called support vectors, that lie closest to the
decision boundary. The support vectors are said to
define the margin that separates the classes. The concept
of a margin is conceptually illustrated in Figure 10. 

By using a slightly different definition of a margin—
suitably modified for AdaBoost—Schapire et al. show that
AdaBoost also boosts the margins, that is, it finds the deci-
sion boundary that is further away from the instances of
all classes. In the context of AdaBoost, the margin of an
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instance is simply the difference between the total vote it
receives from correctly identifying classifiers and the
maximum vote received by any incorrect class. They
show that the ensemble error is bounded with respect to
the margin, but is independent of the number of classi-
fiers [52]. While the bound is loose, the generalization
error decreases with increasing margin, and AdaBoost
maximizes these margins by increasing the confidence of
the ensemble’s decision.

Several variations of AdaBoost are available, a couple
of which are proposed by Freund and Schapire them-
selves: AdaBoost.M2 removes the requirement that each
individual hypothesis should maintain a weighted error
less than 1/2 (for multiclass problems, εt < 1/2 is sufficient,
but not required), whereas AdaBoost.R extends the
boosting approach to regression type problems [26].

There are also more heuristic variations that modify
either the distribution update rule or the combination
rule of the classifiers. For example, AveBoost averages
the distribution weights to make the errors of each
hypothesis as uncorrelated as possible with those of the
previous ones (a key goal for achieving diversity) [53],
[54], whereas Learn++ makes the distribution update
rule contingent on the ensemble error (instead of the pre-
vious hypothesis’ error) to allow for efficient incremental
learning of new data that may introduce new classes [55]. 

3.5. Stacked Generalization
Certain instances may have a high likelihood of being mis-
classified because, for example, they are very close to the
decision boundary, and hence often fall on the wrong side
of the boundary approximated by the classifier. Converse-

ly, certain instances may have a
high likelihood of being correctly
classified, because they are pri-
marily far away from—and on
the correct side of—their respec-
tive decision boundaries. A natu-
ral question arises: can we learn
that certain classifiers consis-
tently correctly classify, or con-
sistently misclassify, certain
instances? Or more specifically,
given an ensemble of classifiers
operating on a set of data drawn
from an unknown but fixed dis-
tribution, can we map the out-
puts of these classifiers to their
true classes?

In Wolpert’s stacked general-
ization, an ensemble of classi-
fiers are first created, whose
outputs are used as inputs to a
second level meta-classifier to
learn the mapping between the
ensemble outputs and the actu-
al correct classes [6]. Figure 11
illustrates the stacked general-
ization approach, where classi-
fiers C1, . . . , CT are trained
using training parameters θ1

through θT (where  may include
different training datasets, clas-
sifier architectural parameters,
etc.) to output hypotheses h1

through hT . The outputs of
these classifiers and the corre-
sponding true classes are then
used as input/output training
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pairs for the second level classifier, CT+1.Traditionally,
the k-fold selection process described in Section 2 is
used to obtain the training data for classifier CT+1.
Specifically, the entire training dataset is divided into T
blocks, and each first-level classifier C1, . . . , CT is first
trained on (a different set of) T − 1 blocks of the training
data. Therefore, there is one block of data not seen by
each of the classifiers C1through CT . The outputs of
each classifier for the block of instances on which it was
not trained, along with the correct labels of those
instances, constitute the training data for the second
level meta-classifier CT+1. Once CT+1 is trained, all data
are pooled, and individual classifiers C1, . . . CT are
retrained on the entire database, using a suitable resam-
pling method.

3.6. Mixture-of-Experts
A conceptually similar technique is the mixture-of-experts
model [4], where a set of classifiers C1, . . . , CT constitute
the ensemble, followed by a second level classifier CT+1

used for assigning weights for the consecutive combiner.
Figure 12 illustrates this model, where the combiner itself
is usually not a classifier, but rather a simple combination
rule, such as random selection (from a weight distribu-
tion), weighted majority, or weighted winner-takes-all.
However, the weight distribution used for the combiner is
determined by a second level classifier, usually a neural
network, called the gating network. The gating network is
trained either through standard gradient descent based
backpropagation, or more commonly, through the expec-
tation maximization (EM)
algorithm [5], [56]. In either
case, the inputs to the gating
network are the actual train-
ing data instances themselves
(unlike outputs of first level
classifiers for stacked gener-
alization), hence the weights
used in combination rule are
instance specific, creating a
dynamic combination rule.

Mixture-of-experts can
therefore be seen as a classifi-
er selection algorithm. Indi-
vidual classifiers are experts
in some portion of the feature
space, and the combination
rule selects the most appro-
priate classifier, or classifiers
weighted with respect to their
expertise, for each instance x.
The pooling system may use
the weights in several differ-

ent ways: it may choose a single classifier with the highest
weight, or calculate a weighted sum of the classifier out-
puts for each class, and pick the class that receives the
highest weighted sum. The latter approach requires that
the classifier outputs be continuous-valued for each class.

4. Combining Classifiers

The second key component of any ensemble system is the
strategy employed in combining classifiers. Combination
rules are often grouped as (i) trainable vs. non-trainable
combination rules, or (ii) combination rules that apply to
class labels vs. to class-specific continuous outputs.

In trainable combination rules, the parameters of the
combiner, usually called weights, are determined through
a separate training algorithm. The EM algorithm used by
the mixture-of-experts model is such an example. The
combination parameters created by trainable rules are
usually instance specific, and hence are also called
dynamic combination rules. Conversely, there is no sepa-
rate training involved in non-trainable rules beyond that
used for generating the ensembles. Discussed below,
weighted majority voting is an example of such non-train-
able rules, since the parameters become immediately
available as the classifiers are generated. 

In the second taxonomy, combination rules that apply
to class labels need the classification decision only (that
is, one of ωj, j = 1, . . . , C ), whereas others need the con-
tinuous-valued outputs of individual classifiers. These
values often represent the degrees of support the classi-
fiers give to each class, and they can estimate class
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conditional posterior probabilities P (ωj|x) if (i) they are
appropriately normalized to add up to 1 for all classes,
and (ii) if the classifiers are trained with sufficiently dense
data. Many classifier models, such as the MLP and the
RBF networks, provide continuous-valued outputs, which
are often interpreted as posterior probabilities—despite
the sufficiently dense training data requirement rarely
being met in practice.

In this paper, we follow the second grouping: we first
review combination rules that apply to class labels, followed
by those that combine class-specific continuous outputs.

4.1. Combining Class Labels
In the following discussion, we assume that only the class
labels are available from the classifier outputs. Let us
define the decision of the tthclassifier as dt, j ∈ {0, 1},
t = 1 . . . ,T and j = 1, . . . C , where T is the number of
classifiers and C is the number of classes. If tth classifier
chooses class ωj, then dt, j = 1, and 0, otherwise. 

4.1.1. Majority Voting
There are three versions of majority voting, where the
ensemble choose the class (i) on which all classifiers agree
(unanimous voting); (ii) predicted by at least one more than
half the number of classifiers (simple majority); or (iii) that
receives the highest number of votes, whether or not the
sum of those votes exceeds 50% (plurality voting or just
majority voting). The ensemble decision for the plurality
voting can be described as follows: choose class  ω J , if

T∑

t=1

dt, J = C
max
j=1

T∑

t=1

dt, j . (17)

This is precisely the voting mechanism used by audience
polling mentioned in the Introduction. It is not difficult to
demonstrate that majority voting is an optimal combination
rule under the minor assumptions of: (1) we have an odd
number of classifiers for a two class problem; (2) the prob-
ability of each classifier choosing the correct class is p for
any instance x; and (3) the classifier outputs are independ-
ent. Then, plurality voting and simple majority voting are
identical, and the ensemble makes the correct decision if at
least �T/2� + 1 classifiers choose the correct label, where
the floor function �·� returns the largest integer less than or
equal to its argument. The accuracy of the ensemble can be
represented by the binomial distribution as the total prob-
ability of choosing k ≥ �T/2� + 1 successful one sout T of
classifiers, where each classifier has the success rate of p.
Hence, Pens, the probability of ensemble success is

Pens =
T∑

k=(T/2)+1

(
T
k

)
pk (1 − p)T−k . (18)

This sum approaches 1 as T → ∞, if p< 0.5; and it
approaches 0 if p< 0.5.This result is known as the Con-
dorcet Jury Theorem (1786), whose details can be found
in [57], [58]. Herein lies the power of audience polling: if
we can assume that the probability of each audience
member giving the correct answer is better than 1/2, then
for a large enough audience (say, over 100), the probabil-
ity of audience success approaches 1. Now, recall that we
need to have 50% + 1 audience members to answer cor-
rectly for the majority voting to choose the correct
answer for a two class problem; but the contestant has to
choose one of four answers (a four class problem). It can
be shown that, with more than two options, fewer classi-
fiers could in fact be sufficient to obtain the correct class,
since the incorrect votes will be distributed over a larger
number of classes. Therefore, insisting that each classifier
has a probability of success of 1/2 or better, is in fact suf-
ficient, but not necessary. It is actually a rather conserva-
tive requirement. An extensive and excellent analysis of
the majority voting approach can be found in [21].

4.1.2. Weighted Majority Voting 
If we have evidence that certain experts are more quali-
fied than others, weighting the decisions of those quali-
fied experts more heavily may further improve the overall
performance than that can be obtained by the plurality
voting. Again, let us denote the decision of hypothesis ht

on class ωj as dt, j, such that dt, j is 1, if ht selects ωj and 0,
otherwise. Further assume that we have a way of esti-
mating the future performance of each classifier, and we
assign a weight wt to classifier ht in proportion to its esti-
mated performance. According to this notation, the clas-
sifiers whose decisions are combined through weighted
majority voting will chose class J, if

T∑

t=1

wtdt, J = C
max
j=1

T∑

t=1

wtdt, j (19)

that is, if the total weighted vote received by ωj is higher
than the total vote received by any other class. For easi-
er interpretation, we can normalize these weights so that
they sum up to 1; however, normalization does not
change the outcome of weighted majority voting.

A natural question is then “how do we assign the
weights?” Clearly, had we known which classifiers would
work better, we would give the highest weights to those
classifiers, or perhaps, use only those classifiers. In the
absence of this knowledge, a plausible strategy is to use
the performance of a classifier on a separate validation
dataset, or even its performance on the training dataset,
as an estimate of that classifier’s future performance. As
indicated in Equations 13 and 15, AdaBoost follows the
latter approach: AdaBoost assigns a voting weight of
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log (1/βt) to ht , where βt = εt/(1 − εt), and εt is the
weighted training error of hypothesis ht . We have men-
tioned that the normalization of the error allows us to
use an error measure β that is between 0 and 1 (as
opposed to ε, which is between 0 and 1/2); however, there
is another strategic reason for this specific normaliza-
tion. It can be shown that if we have T class-conditional-
ly-independent classifiers with individual accuracies
p1, . . . , pT , the accuracy of the ensemble combined by
weighted majority voting is maximized if the voting
weights satisfy the proportionality

wt ∝ log
pt

1 − pt
(20)

whose proof can be found in [21]. Representing the
accuracies of individual classifiers as pt =1 − εt , we see
that the weight assignment used by AdaBoost is identical
to the one in Equation 20. A detailed discussion on
weighted majority voting can also be found in [59].

4.1.3. Behavior Knowledge Space (BKS)
Originally proposed by Huang and Suen, the behavioral
knowledge space (BKS) uses a look up table, constructed
based on the classification of the training data that keeps
track of how often each labeling combination is produced
by the classifiers [60], [61]. Then, the true class, for
which a particular labeling combination is observed most
often during training, is chosen every time that combina-
tion of class labels occurs during testing. The procedure
is best described by an example, illustrated in Figure 13.

Assume that we have three classifiers C1 ∼ C3, for a three
class problem. There are 27 possible combinations of
labeling, listed from {ω1 ω2 ω3} to [62], that can be chosen
by the three classifiers. During training, we keep track of
how often each combination occurs, and the correspon-
ding correct class for each such occurrence. Sample num-
bers are provided for each combination and for each
class, and the maxima are circled in Figure 13. For exam-
ple, let us assume that the combination of {ω1 ω1 ω1}
occurs a total of 28 times, and in 10 of them the true class
is ω1, in 15 of them the true class is ω2, and in 3 of them,
the true class is ω3. The winner of this combination is
therefore ω2, the most frequently observed true class for
this combination of labels. Therefore, during testing,
every time the combination of ω1 ω2 ω1 occurs, the
ensemble chooses ω2. Note that the choice of ω2 is differ-
ent than the class ω1 that would have been chosen by the
simple majority rule for this combination of labels. If
trained with sufficiently dense training data, and if the
table is appropriately normalized, the maximum vote
obtained from the BKS table can estimate the class pos-
terior probabilities with reasonable accuracy.

4.1.4. Borda Count
Borda count is different from rules listed previously in
one important aspect: it does not throw away the support
given to a non-winning class. Borda count is typically
used if and when the classifiers can rank order the class-
es. This can be easily done if the classifiers provide con-
tinuous outputs, as the classes can then be rank ordered
with respect to the support they receive from the
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classifier. However, Borda count does not need the values
of these continuous outputs, but just the rankings, hence
it qualifies as a combination rule that apply to labels.

In standard Borda count, each voter (classifier) rank-
orders the candidates (classes). If there are N candi-
dates, the first-place candidate receives N − 1 votes, the
second-place candidate receives N − 2, with the candi-
date in i th place receiving N − i votes. The candidate
ranked last receives 0 votes. The votes are added up
across all classifiers, and the class with the most votes is
chosen as the ensemble decision.

Originally devised in 1770 by Jean Charles de Borda,
Borda count is used often in practice: selecting the most
valuable player in U.S. baseball league, ranking universi-
ties in college sports, electing officers at certain univer-
sity senate elections, and choosing the winning song in
the annual European wide song contest Eurovision, all
use some suitable variation of Borda count.

4.2. Combining Continuous Outputs
The continuous output provided by a classifier for a given
class is interpreted as the degree of support given to that
class, and it is usually accepted as an estimate of the pos-
terior probability for that class. The posterior probability
interpretation requires access to sufficiently dense train-
ing data, and that the outputs be appropriately normal-
ized to add up to 1 over all classes. Usually, the softmax
normalization is used for this purpose [63]. Representing
the actual classifier output corresponding to the j th class
as gj (x)(x), and the normalized values as g ′

j (x), approximat-
ed posterior probabilities P(ωj|x) can be obtained as

P(ωj |x) ≈ g′
j(x) = egj(x)

∑C
c=1 egc(x)

⇒
∑C

j=1
g′

j(x) = 1. (21)

Kuncheva et al. define the so-called decision profile matrix
in [16], which allows us to pres-
ent all of the following combina-
tion rules from a unified
perspective. The decision pro-
file matrix DP (x), for an
instance x, consists of elements
dt, j ∈ [0, 1], which represent the
support given by the t th classifi-
er to class ωj. The rows of DP
(x), therefore, represent the sup-
port given by individual classi-
fiers to each of the classes,
whereas the columns represent
the support received by a par-
ticular class from all classifiers.

The decision profile matrix is illustrated in Figure 14.

4.2.1. Algebraic combiners
Simple algebraic combiners are, in general, non-trainable
combiners of continuous outputs. The total support for
each class is obtained as a simple function of the sup-
ports received by individual classifiers. Following the
same notation in [16], we represent the total support
received by class ωj, the j th column of the decision pro-
file DP(x), as

µj(x) = �[d1, j(x), · · · , dT, j(x)] (22)

where � (.) is the combination function, such as one of
those listed below.
Mean Rule: The support for ωj is obtained as the average
of all classifiers’ j th outputs,

µj (x) = 1
T

T∑

t=1

dt, j (x) (23)

that is, the function �(·) is the averaging function. The
mean rule is equivalent to the sum rule (within a normal-
ization factor of 1/T), which also appears often in the lit-
erature. In either case, the ensemble decision is taken as
the class ωj for which the total support µj (x) is largest.
Weighted Average: This rule is a hybrid of the mean and
the weighted majority voting, where the weights are
applied not to class labels, but to the actual continuous
outputs. This particular combination rule can qualify
either as a trainable or non-trainable combination rule,
depending on how the weights are obtained. If the
weights are obtained during the ensemble generation as
part of the regular training, as in AdaBoost, then it is a
non-trainable combination rule. If a separate training is
used to obtain the weights, such as in mixture of experts
model, then it is a trainable combination rule. Usually, we
have a weight for each classifier, or sometimes for each
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Figure 14. Decision profile for a given instance x.



class and for each classifier. In the former case, we have
T weights, w1, . . . , wT ,usually obtained as estimated
accuracies from training performances, and the total sup-
port for class ωj is 

µj (x) =
T∑

t =1

wtdt, j (x). (24)

In the latter case, we have a total of T × C weights that
are class and classifier specific, hence a class-conscious
combination [16]. Total support for class ωj is given as

µj (x) =
T∑

t =1

wt, jdt, j (x) (25)

where wt, j is the weight of the t th classifier for classifying
class ωj instances.
Trimmed Mean: What if some of the classifiers give
unwarranted and unusually low, or unusually high sup-
port to a particular class? This would adversely affect
the mean combiner. To avoid this problem, the most opti-
mistic and pessimistic classifiers are removed from the
ensemble before calculating the mean, a procedure
known as the trimmed mean. For a P % trimmed mean,
we simply remove P % of the support from each end, and
the mean of the remaining supports are calculated,
avoiding extreme values of support.

Minimum/Maximum/Median Rule: As the names imply,
these functions simply take the minimum, maximum or
the median among the classifiers’ individual outputs.

µj(x) = max
t=1···T

{dt, j(x)}
µj(x) = min

t=1···T
{dt, j(x)}

µj(x) = median
t=1···T

{dt, j(x)} (26)

In any of these cases, the ensemble decision is again cho-
sen as the class for which total support is largest. The
minimum rule is the most conservative combination rule,
as it chooses the class for which the minimum support
among the classifiers is largest. Also worth mentioning is
that the trimmed mean at limit 50% is equivalent to the
median rule.
Product Rule: In product rule, supports provided by
the classifiers are multiplied. This rule is very sensi-
tive to the most pessimistic classifiers: a low support
(close to 0) for a class from any of the classifiers can
effectively remove any chance of that class being
selected. However, if individual posterior probabili-
ties are estimated correctly at the classifier outputs,
then this rule provides the best estimate of the over-
all posterior probability of the class selected by the
ensemble.
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Product Rule: C1: 0.0179, C2: 0.00021, C3: 0.0009
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Figure 15. Example on various combination rules.



µj (x) = 1
T

T∏

t=1

dt, j (x). (27)

Generalized Mean: Many of the above rules are in fact
special cases of the generalized mean,

µj (x, α) =
(

1
T

T∑

t=1

dt, j (x)α

)1/α

(28)

where specific choices of α results in different combina-
tion rules discussed above. For example, for α → −∞,
we obtain the minimum rule, µj (x, α) = mint {dt, j](x)}; for
α → 0, we obtain

µj (x, α) =
(∏T

t=1
dt, j (x)

)1/T
(29)

which is the geometric mean, a modified version of the
product rule. For α → 1, we obtain the mean rule, and
α → ∞ gives us the maximum rule.

As an example, consider the case in Figure 15, where
we have a five classifier ensemble for a three class prob-
lem. Assume that we have obtained the outputs and
weights shown in Figure 15 for a given input x from the
ensemble. The corresponding decision profile for x is then

DP(x) =




0.85 0.01 0.14
0.3 0.5 0.2
0.2 0.6 0.2
0.1 0.7 0.2
0.1 0.1 0.8




. (30)

We make several observations from Figure 15, where the
winning class for each combination rule is shown in bold.
(i) Different classes may win for different combination
rules. In this example, class 2 wins most of the combina-
tion rules, class 1 wins three and class 3 wins only one
rule (the minimum rule).
Had Classifier 5 output
been [0.05 0.05 0.9],
instead of [0.1 0.1 0.8],
however, class 3 would
have also won the maxi-
mum rule; (ii) the product
rule and minimum rule
severely punishes class 2,
as it received very little
support from classifier C1;
(iii) sum rule and mean
rule provide the same out-
come, as expected; and
(iv) the weighted average
chooses class 1 primarily

because of the high support given to class 1 by the high-
ly weighted Classifier 1. The three voting-based rules for
combining label outputs are also provided, all of which
have voted in favor of class 2 (for Borda Count, the ties in
rankings were randomly broken in favor of class 1, and
classifier weights given on top of classifiers were used for
weighted majority voting).

4.2.2. Decision Templates
Kuncheva takes the idea of decision profiles one step fur-
ther by defining decision templates as the average deci-
sion profile observed for each class throughout training
[16]. Given a test instance x, its decision profile is com-
pared to the decision templates of each class, and the
class whose decision template is closest, in some similar-
ity measure, is chosen as the ensemble decision. More
specifically, the decision template for ωj, illustrated in
Figure 16, is calculated as 

DTj = 1
Nj

∑

PXj∈ωj

DP(Xj) (31)

which is the average decision profile obtained from Xj,
the set (with cardinality Nj) of training in stances that
belong to true class ωj. Given an unlabeled test instance
x, we first construct its DP(x) from the ensemble outputs
(as shown in Figure 15), and calculate the similarity S
between DP(x) and the decision template DTj for each
class ωj as the degree of support given to class ωj.

µj(x) = S(DP(x), DTj), j = 1, · · · , C . (32)

The similarity measure S is usually a squared Euclidean
distance, obtained as

µj(x) = 1 − 1
T × C

T∑

t=1

C∑

k=1

[DTj(t,k) − dt,k(x)]2 (33)
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Figure 16. Decision template for class ωj obtained as averaged class ωj decision profiles.



where DTj (t,k) is the support given by the t th classifier
to class ωk by the decision template DTj. In other words,
DTj (t,k) is the support given by the t th classifier to class
ωk, averaged over class ωj instances. This support should
ideally be high when k = j, and low otherwise. The sec-
ond term dt,k(x) is the support given by the t th classifier
to class ωk for the given instance x. As usual, the class
with the highest total support is finally chosen as the
ensemble decision.

4.2.3. Dempster-Shafer Based Combination
This combination rule is borrowed from data fusion, a
field of data analysis primarily involved in combining
elements of evidence provided by different sources of
data. Many data fusion techniques are based on the
Dempster-Shafer (DS) theory of evidence, which uses
belief functions (instead of probability) to quantify the
evidence available from each data source, which are
then combined using Dempster’s rule of combination
[64], [65]. DS theory has traditionally been used in mili-
tary applications, such as sensor fusion for target track-
ing, or friend or foe identification. It can easily be
applied, however, to any decision making problem, by
interpreting the output of a classifier as a measure of
evidence provided by the source that generated the
training data [10], [34]. In such a setting, DS theory is
not used for data fusion, that is, to combine data from
different sources, but rather, to combine the evidence
provided by ensemble classifiers trained on data coming
from the same source. We describe the DS theory as an
ensemble combination rule here, and discuss its feasi-
bility of ensemble systems for combining data from dif-
ferent sources later under Current and Emerging Areas.

The decision template formulation becomes useful in
describing DS theory as an ensemble combination rule:
let DT t

j denote the t th row of the decision template  DTj,
and Ct(x) denote the output of the t th classifier, that is,
the t th row of the decision profile DP(x):
Ct (x) = [dt,1(x), . . . , dt,C (x)]. Instead of similarity, we
now calculate proximity �j,t(x) of the t th classifier’s class
j decision template DT t

j to this classifier’s decision on
instance x, Ct(x) [10], [21], [35]:

�j,t (x) =

(
1 +

∥∥∥DT t
j − Ct (x)

∥∥∥
2
)−1

C∑
k=1

(
1 + ∥∥DT t

k − Ct (x)
∥∥2

)−1
(34)

where the differences (calculated as distances in Euclid-
ean norm) in both numerator and denominator are con-
verted to similarities—representing proximities—using
the reciprocal operation. The denominator is really a
normalization term, representing the total proximity of

t th classifier decision to the decision templates of all
classes. Based on these proximities, we compute our
belief, or evidence, that the t th classifier Ct is correctly
identifying instance x into class ωj,

bj (Ct (x)) = �j,t (x)
∏

k �= j
(
1 − �k,t (x)

)

1 − �j,t (x)
[
1 − ∏

k �= j
(
1 − �k,t (x)

)] (35)

Once the belief values are obtained for each source (clas-
sifier), they can be combined by Dempster’s rule of com-
bination, which simply states that the evidences (belief
values) from each source should be multiplied to obtain
the final support for each class:

µj (x) = K
T∏

t =1

bj (Ct (x)) (36)

where K is a normalization constant ensuring that the
total support for ωj from all classifiers is 1.

4.3. But, Which One Is Better?
When there are many competing approaches to a prob-
lem, an effort to determine a winning one is inevitable.
Hence the question “which ensemble generation or com-
bination rule is the best?” The no-free-lunch theorem has
unarguably proven that there is in fact no such best clas-
sifier for all classification problems [47], and that the best
algorithm depends on the structure of the available data
and prior knowledge. Yet, many studies have compared
various ensemble generation and combination rules
under various scenarios. For example, Dietterich [66],
[67], Breiman [68], Bauer et al. [69], Drucker [17] and
Quinlan [70] all separately compared bagging, boosting
and other ensemble based approaches. The typical con-
sensus is that boosting usually achieves better general-
ization performances, but it is also more sensitive to
noise and outliers.

Does the no-free-lunch theorem hold for combination
rules as well? Many studies have been conducted to
answer this question, including [18], [27], [28], [31],
[36], [37], [42], [71], [72], among others. Their verdict?
In general, the no-free-lunch theorem holds. The best
combination method, just as for the best ensemble
method, depends much on the particular problem. How-
ever, there is a growing consensus on using the mean
rule due to its simplicity and consistent performance
over a broad spectrum of applications. If the accuracies
of the classifiers can be reliably estimated, then the
weighted average and weighted majority approaches
may be considered. If the classifier outputs correctly
estimate the posterior probabilities, then the product
rule should be considered.
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5. Current & Emerging Areas

Despite two decades of intense research, and the widely
held belief that our current understanding of ensemble
based systems has matured [73], the field seems to be
enjoying a growing attention. This may, in part, be due to
emerging areas of applications that benefit from ensem-
ble systems. The primary thrust of using ensemble sys-
tems has been to reduce the risk of choosing a single
classifier with a poor performance, or to improve upon
the performance of a single classifier by using an intelli-
gently combined ensemble of classifiers. Many additional
areas and applications have recently emerged, however,
for which the ensemble systems are inherently appropri-
ate. In this section, we discuss some of the more promi-
nent examples of such emerging areas.

5.1. Incremental Learning
In certain applications, it is not uncommon for the entire
dataset to gradually become available in small batches
over a period of time. Furthermore, datasets acquired in
subsequent batches may introduce instances of new
classes that were not present in previous datasets. In
such settings, it is necessary to learn the novel informa-
tion content in the new data, without forgetting the previ-
ously acquired knowledge, and without requiring access
to previously seen data. The ability of a classifier to learn
under these circumstances is usually referred to as incre-
mental learning.

A practical approach for learning from new data
involves discarding the existing classifier, and retraining a
new one using all data that have been accumulated thus
far. This approach, however, results in loss of all previ-
ously acquired information, a phenomenon known as cat-
astrophic forgetting (or interfering) [74]. Not conforming to
the above stated definition of incremental learning aside,
this approach is undesirable, if retraining is computation-
ally or financially costly; but more importantly, it is
unfeasible, if the original dataset is lost, corrupted, dis-
carded, or otherwise unavailable. Such scenarios are not
uncommon in databases of restricted or confidential
access, such as in medical and military applications.

Ensemble systems have been successfully used to
address this problem. The underlying idea is to generate
additional ensembles of classifiers with each subsequent
database that becomes available, and combine their out-
puts using one of the combination methods discussed
above. The algorithm Learn++ and its recent variations
have been shown to achieve incremental learning on a
broad spectrum of applications, even when new data
introduce instances of previously unseen classes [55],
[75], [76]. Learn++ is inspired in part by AdaBoost; how-
ever it differs from AdaBoost in one important aspect:
recall that AdaBoost updates its weight distribution

based on the performance of hypothesis ht generated in
the previous iteration [26]. In contrast, Learn++ intro-
duces the notion of composite hypothesis—the com-
bined ensemble generated thus far at any given
iteration—and updates its distribution based on the per-
formance of the current ensemble through the use of this
composite hypothesis. Learn++ then focuses on
instances that have not been properly learned by the
entire ensemble. During incremental learning, previously
unseen instances, particularly those coming from a new
class, are bound to be misclassified by the ensemble,
forcing the algorithm to focus on learning such instances
introduced by the new data. Furthermore, Learn++ cre-
ates an ensemble of ensemble classifiers, one ensemble
for each database. The ensembles are then combined
through a modified weighted majority voting algorithm.
More recently, it was shown that the algorithm also works
well, even when the data distribution is unbalanced,
where the number of instances in each class or database
vary significantly [77].

5.2. Data Fusion
The goal of data fusion is to extract complementary
pieces of information from different data sources, allow-
ing a more informed decision about the phenomenon gen-
erating the underlying data distributions. While ensemble
systems are often used for fusing classifier outputs, such
applications have traditionally used classifiers that are
trained with different sampling of the data that comes
from the same distribution. Therefore, all classifiers are
trained on the same feature set. In data fusion applica-
tions, however, data obtained from different sources may
use different feature sets that may be quite heteroge-
neous in their composition. An example would be com-
bining medical test results including an MRI scan (an
image), an electroencephalogram (a time series), and
several blood tests (scalar numbers) for the diagnosis of
a neurological disorder.

Even with heterogeneous feature sets, data fusion is a
natural fit for ensemble systems, since different classi-
fiers can be generated using data obtained from different
sources, and subsequently combined to achieve the
desired data fusion. Several classifier fusion approaches
have been proposed for this purpose, including combin-
ing classifiers using Dempster-Shafer based combination
[78]–[80], ARTMAP [81], Learn++ [82], genetic algo-
rithms [83] and other combinations of boosting/voting
methods [84]–[86].

5.3. Feature Selection
One way to improve diversity in the ensemble is to train
the classifiers with data that consist of different feature
subsets. Several approaches based on this idea have
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been proposed. Selecting the feature subsets at random is

known as the random subspace method, a term coined by
Ho [44], who used it on constructing decision tree ensem-
bles. Subset selection need not be random: Oza and
Tumer propose input decimation, where the features are
selected based on their correlation with the class labels
[39]. In general, feature subsets should promote diversi-
ty, that is, identical subsets should not be repeated. While
most approaches allow overlapping subsets of features,
Gunter and Bunke [87] use mutually exclusive sets.

An interesting application of using feature subsets has
been proposed by Krause and Polikar, who used an ensem-
ble of classifiers trained with an iteratively updated feature
distribution to address the missing feature problem [88]. The
idea is to generate a large enough ensemble of classifiers
using random subsets of features. Then, if certain features
are missing from a given data instance, that instance can still
be classified by a pool of classifiers that did not use the miss-
ing features during their training. Another interesting appli-
cation of using an ensemble of classifiers with different
feature subsets was proposed by Long and Vega, who have
used the ensemble performance in determining the most
informative feature subsets in gene expression data [89].

All of the above mentioned approaches implicitly
assume that there is redundancy in the overall feature
set, and that the features are not consecutive elements of
a time-series data.

5.4. Error Correcting Output Codes
Error correcting output codes (ECOC) have originally
been used in information theory for correcting bit rever-
sals caused by noisy communication channels. More
recently, they have also been used in converting binary
classifiers, such as support vector machines, to multi-
class classifiers by decomposing a multi-class problem
into several two-class problems [90]. Inspired by these
works, Dietterich and Bakiri introduced ECOC to be used
within the ensemble setting [91]. The idea is to use a dif-
ferent class encoding for each member of the ensemble.

The encodings constitute a binary C by T code matrix,

where C is the number of classes and T is the number of
classifiers, combined by the minimum Hamming distance
rule. Table 1 shows a particular code matrix for a 5-class
problem that uses 15 encodings. This encoding, sug-
gested in [91], is known as the exhaustive coding because
it includes all possible non-trivial and non-repeating
codes. In this formulation, the individual classifiers are
trained on several meta two-class problems, where indi-
vidual meta-classes include some combination of the
original classes. For example, C5 recognizes two meta-
classes: original classes ω1 and ω3 constitute one class,
and the others constitute the second class. During test-
ing, each classifier outputs a “0” or “1” creating a 2C −1 − 1
long output code vector. This vector is compared to each
code word in the code matrix, and the class whose code
word has the shortest Hamming distance to the output
vector is chosen as the ensemble decision. More formally,
the support for class ωj is given as

µj (x) = −
T∑

t=1

|ot − Mj,t| (37)

where ot ∈ {0, 1} is the output of the t th binary classifier,
and M is the code matrix. The negative sign converts the
distance metric into a support value, whose largest value
can be zero in case of a perfect match. For example, the
output [0 1 1 1 0 1 0 1 0 1 0 1 0 1 0] is closest to ω5 code
word with a Hamming distance of 1 (support of −1), and
hence ω5 would be chosen for this output. Note that this
output does not match any of the code words exactly, and
therein lies the error correcting ability of the ECOC. In
fact, the larger the minimum Hamming distance between
code words, the more resistant the ECOC ensemble
becomes to misclassifications of individual classifiers.
More efficient and error-resistant coding (choosing
appropriate codes) as well as decoding (combination
methods other than Hamming distance) are topics of cur-
rent research [92], [93].
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Class C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15

ω1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

ω2 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1

ω3 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1

ω4 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1

ω5 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

Table 1. 
Exhaustive ECOC for a five-class problem.



5.5. Confidence Estimation
Using an ensemble based system also allows us to quan-
titatively assess the confidence of the decision even on an
instance-by-instance basis. Loosely speaking, if a vast
majority of classifiers in the ensemble agree on the deci-
sion of a given instance, we can interpret this outcome as
the ensemble having a high confidence in its decision.
Conversely, if the final decision is made based on a small
difference in classifier opinions, then the ensemble would
have less confidence in its decision. Muhlbaier et al.
showed that continuous valued outputs of ensemble clas-
sifiers can also be used as an estimate of the posterior
probability, which in turn can be interpreted as the confi-
dence in the decision [29]. Specifically, they showed that
the posterior probability of ωj can be estimated through a
softmax type normalization of classifier outputs:

P(ωj |x) ≈ Xj (x) = eFj(x)

∑C
c=1 eFc(x)

(38)

where Xj (x) is the confidence of the ensemble in assign-
ing instance x into class ωj and 

Fj (x) =
N∑

t =1

(
log(1/βt) ht(x) = ωj

0 otherwise

)
(39)

is the total weighted sum of the weights for ωj. More inter-
estingly, on several benchmark datasets of known distribu-
tions, they showed that the posterior probability estimate
of the ensemble approaches the true posterior probability
as the number of classifiers in the ensemble increases.

5.6. Other Areas
There are other areas in which ensemble systems have
been used and/or proposed, and the list is continuously
growing at what appears to be a healthy rate. Some of the
more promising ones include using ensemble systems in
non-stationary environments [19], in clustering applica-
tions [94]–[96], and countless work on theoretical analy-
ses of such systems, such as on incremental learning,
improving diversity, bias-variance analysis, etc. Specific
practical applications of ensemble systems—whether
used for biomedical, financial, remote sensing, genomic,
oceanographic, chemical or other types of data analysis
problems are also rapidly growing.

6. Conclusions

Over the last decade, the ensemble based systems have
enjoyed a growing attention and popularity due to their
many desired properties, and the broad spectrum of
applications that can benefit from them. In this paper, we
discussed the fundamental aspects of these ensemble
systems, including the need to ensure—and ways to

measure—diversity in the ensemble; ensemble genera-
tion techniques such as bagging, AdaBoost, mixture of
experts; and classifier combination strategies, such as
algebraic combiners, voting methods, and decision tem-
plates. We have also reviewed some of the more popular
areas where ensemble systems become naturally useful,
such as incremental learning, data fusion, feature selec-
tion and error correcting output codes. 

Whereas there is no single ensemble generation algo-
rithm or combination rule that is universally better than
others, all of the approaches discussed above have been
shown to be effective on a wide range of real world and
benchmark datasets, provided that the classifiers can be
made as diverse as possible. In the absence of any other
prior information, the best ones are usually (as the
William of Ockham had said about 8 centuries ago) the
simplest and least complicated ones that can learn the
underlying data distribution. 

As for the quiz show with the large payout, where you
had to choose from the three lifelines, let’s focus our
attention once again to Equation 18:

■ if the individual audience members vote independ-
ently (a reasonable assumption); and

■ there is a reasonably large audience (another rea-
sonable assumption); and 

■ each has a probability of 0.5 or higher for getting
the correct answer (sufficient, but not necessary
for more than two choices),

then the probability of correct answer of the majority vot-
ing of the audience (the ensemble) approaches 1. So, unless
you know for a fact that your friend (for the “call a friend”
option) has a very high probability of knowing the correct
answer (prior information that warrants a change in your
course of action), you are better off with the audience. Just
in case you find yourself in that fortunate situation . . . .

Software

The following software tools include Matlab based func-
tions that can be used for ensemble learning. Many other
tools can also be found on the Internet.

■ C. Merkwinh and J. Wichard, “ENTOOL—A Matlab
Toolbox for Ensemble Modeling,” 2002. Available
online at: http://chopin.zet.agh. edu.pl/∼wichtel 

■ R. P.W. Duin, D. Ridder, P. Juszczak, P. Paclik, E.
Pekalska and D. Tax, “PRTools,” 2005. Available
online at: http://www.prtools.org 

■ D. Stork and E. Yom-Tov, “Computer Manual in Mat-
lab to Accompany Pattern Classification, 2nd Edi-
tion, New York: Wiley, 2004.
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