Article detail
Authors: Ornella, L.; Bulacio, P.; Tapia, E.
Title: Utilización de técnicas de aprendizaje computacional para la predicción del comportamiento heterótico en base a información de marcadores moleculares.
Resume:
Existen varios métodos estadísticos propuestos para asignar nuevas líneas a grupos heteróticos en maíz (Zea mays L) con resultados variables. Nuestra conjetura es que tales modelos no capturan la relación no-lineal entre información de las líneas parentales y la perfomance de la progenie y que tal tipo de no-linealidad puede ser fácilmente capturada por algoritmos de aprendizaje computacional supervisado. Por aprendizaje computacional nos referimos a un dominio de investigación relacionado con la inferencia estadística, inteligencia artificial y teoría de optimización; cuyo objetivo es construir sistemas capaces de aprender a resolver tareas dados un conjunto de ejemplos muestreados de una distribución de probabilidad desconocida y con algún conocimiento previo de la tarea. Seis (6) clasificadores multiclase, implementados en el entorno WEKA, fueron evaluados con dos conjuntos de datos experimentales utilizando 20 corridas montecarlo y validación cruzada 3, 5 y 10 fold. Nuestros resultados, aunque preliminares, sugieren la utilidad de técnicas de aprendizaje computacional para resolver problemas de asignación a a grupos heteróticos.
.Magazine: Actas de las Academia Nacional de Ciencias.
Editorial: Pugliese Siena PS.
Editing place: Córdoba.
Reference type: Con Referato.
It's published?: Yes
ISSN: 0325-7533.
Volumen: 14.
Pages:117-124