Congress detail

Authors: Alejandro Anderson; Alejandro González; Antonio Ferramosca; Ernesto Kofman.

Title: Finite-time convergence results in Model Predictive Control.

Resumen: Asymptotic stability (convergence and $epsilon$-$delta$ stability) of invariant sets under model predictive control (MPC) strategies have been extensively studied in the last decades. Lyapunov theory is in some sense the common denominator of the different forms to achieve such results. However, the meaningful problem of the finite-time convergence (for a given fixed control horizon) has not received much attention in the literature (with some remarkable exceptions).In this work a novel set-based MPC that ensures finite-time convergence in a natural way is presented. The contractivity and non-empty interior conditions of the target set, the consideration of an appropriate input set and the continuity of the dynamic model are the main hypothesis to be made. An upper bound for the convergence time is also provided.

Meeting type: Conferencia.

Type of job: Artículo Completo.

Production: Finite-time convergence results in Model Predictive Control.

Scientific meeting: 2018 European Control Conference.

Meeting place: Limassol.

Organizing Institution: European Control Association (EUCA), IEEE CSS.

It's published?: Yes

Publication place: Limassol

Meeting month: 6