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Transfer Learning
In practice, very few people train an entire Convolutional Network from scratch (with
random initialization), because it is relatively rare to have a dataset of sufficient size.
Instead, it is common to pretrain a ConvNet on a very large dataset (e.g. ImageNet,
which contains 1.2 million images with 1000 categories), and then use the ConvNet
either as an initialization or a fixed feature extractor for the task of interest. The three
major Transfer Learning scenarios look as follows:

ConvNet as fixed feature extractor. Take a ConvNet pretrained on ImageNet,
remove the last fully-connected layer (this layer's outputs are the 1000 class
scores for a different task like ImageNet), then treat the rest of the ConvNet as
a fixed feature extractor for the new dataset. In an AlexNet, this would
compute a 4096-D vector for every image that contains the activations of the
hidden layer immediately before the classifier. We call these features CNN
codes. It is important for performance that these codes are ReLUd (i.e.
thresholded at zero) if they were also thresholded during the training of the
ConvNet on ImageNet (as is usually the case). Once you extract the 4096-D
codes for all images, train a linear classifier (e.g. Linear SVM or Softmax
classifier) for the new dataset.
Fine-tuning the ConvNet. The second strategy is to not only replace and
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retrain the classifier on top of the ConvNet on the new dataset, but to also fine-
tune the weights of the pretrained network by continuing the backpropagation.
It is possible to fine-tune all the layers of the ConvNet, or it's possible to keep
some of the earlier layers fixed (due to overfitting concerns) and only fine-tune
some higher-level portion of the network. This is motivated by the observation
that the earlier features of a ConvNet contain more generic features (e.g. edge
detectors or color blob detectors) that should be useful to many tasks, but
later layers of the ConvNet becomes progressively more specific to the details
of the classes contained in the original dataset. In case of ImageNet for
example, which contains many dog breeds, a significant portion of the
representational power of the ConvNet may be devoted to features that are
specific to differentiating between dog breeds.

Pretrained models. Since modern ConvNets take 2-3 weeks to train across multiple
GPUs on ImageNet, it is common to see people release their final ConvNet
checkpoints for the benefit of others who can use the networks for fine-tuning. For
example, the Caffe library has a Model Zoo where people share their network
weights.

When and how to fine-tune? How do you decide what type of transfer learning you
should perform on a new dataset? This is a function of several factors, but the two
most important ones are the size of the new dataset (small or big), and its similarity
to the original dataset (e.g. ImageNet-like in terms of the content of images and the
classes, or very different, such as microscope images). Keeping in mind that
ConvNet features are more generic in early layers and more original-dataset-specific
in later layers, here are some common rules of thumb for navigating the 4 major
scenarios:

1. New dataset is small and similar to original dataset. Since the data is small, it
is not a good idea to fine-tune the ConvNet due to overfitting concerns. Since
the data is similar to the original data, we expect higher-level features in the
ConvNet to be relevant to this dataset as well. Hence, the best idea might be to
train a linear classifier on the CNN codes.

2. New dataset is large and similar to the original dataset. Since we have more
data, we can have more confidence that we won't overfit if we were to try to
fine-tune through the full network.

https://github.com/BVLC/caffe/wiki/Model-Zoo
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3. New dataset is small but very different from the original dataset. Since the
data is small, it is likely best to only train a linear classifier. Since the dataset is
very different, it might not be best to train the classifier form the top of the
network, which contains more dataset-specific features. Instead, it might work
better to train the SVM classifier from activations somewhere earlier in the
network.

4. New dataset is large and very different from the original dataset. Since the
dataset is very large, we may expect that we can afford to train a ConvNet
from scratch. However, in practice it is very often still beneficial to initialize
with weights from a pretrained model. In this case, we would have enough
data and confidence to fine-tune through the entire network.

Practical advice. There are a few additional things to keep in mind when performing
Transfer Learning:

Constraints from pretrained models. Note that if you wish to use a pretrained
network, you may be slightly constrained in terms of the architecture you can
use for your new dataset. For example, you can't arbitrarily take out Conv
layers from the pretrained network. However, some changes are straight-
forward: Due to parameter sharing, you can easily run a pretrained network on
images of different spatial size. This is clearly evident in the case of Conv/Pool
layers because their forward function is independent of the input volume
spatial size (as long as the strides "fit"). In case of FC layers, this still holds true
because FC layers can be converted to a Convolutional Layer: For example, in
an AlexNet, the final pooling volume before the first FC layer is of size
[6x6x512]. Therefore, the FC layer looking at this volume is equivalent to
having a Convultional Layer that has receptive field size 6x6, and is applied
with padding of 0.
Learning rates. It's common to use a smaller learning rate for ConvNet weights
that are being fine-tuned, in comparison to the (randomly-initialized) weights
for the new linear classifier that computes the class scores of your new
dataset. This is because we expect that the ConvNet weights are relatively
good, so we don't wish to distort them too quickly and too much (especially
while the new Linear Classifier above them is being trained from random
initialization).

Additional References
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Additional References
CNN Features off-the-shelf: an Astounding Baseline for Recognition trains
SVMs on features from ImageNet-pretrained ConvNet and reports several
state of the art results.
DeCAF reported similar findings in 2013. The framework in this paper (DeCAF)
was a Python-based precursor to the C++ Caffe library.
How transferable are features in deep neural networks? studies the transfer
learning performance in detail, including some unintuitive findings about layer
co-adaptations.
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