

EC

ESCUELA DE CIENCIAS INFORMÁTICAS

Métodos Actuales de Machine Learning Neural Networks

Linear Perceptron

Linear Perceptron

inputs weights

Softmax Regression

Softmax Regression Training

 $NLL(\theta, D) = -\sum_{i=0}^{|D|} \log P(Y = y^{(i)} | x^{(i)}, \theta)$ Negative Log-Likelihood

Linear Perceptron

Multilayer Perceptrons (MLP)

Multilayer Perceptrons (MLP)

$$J(\mathcal{D}, W, b) = \sum_{x, y \in \mathcal{D}} \log p(y|x) \qquad \text{Log-Likelihood}$$
$$\log p(y|x) = x^T W + b + c(x) \qquad \text{Single layer soft}$$

MLP output

yer softmax

Multilayer Perceptrons (MLP)

 $g_2(g_1) = \operatorname{softmax}(g_1^T W^{(2)} + b^{(2)})$

 $f(x) = \operatorname{softmax}\left(\sigma(x^T W^{(1)} + b^{(1)})^T W^{(2)} + b^{(2)}\right)$

Gradient Based Learning Machine

LeCun, Yann A et al. "Efficient backprop." Neural networks: Tricks of the trade (2012): 9-48.

Gradient Descent

Stochastic Gradient Descent

Algorithm 1 GRADIENT DESCENT

Algorithm 2 STOCHASTIC GRADIENT DESCENT

1: for $(x_i, y_i) \in \mathcal{D}_{train}$ do \triangleright imagine an infinite generator that may repeat 2: \triangleright examples (if there is only a finite training set) 3: loss = $f(\text{params}, x_i, y_i)$ 4 $d_{\text{loss_wrt_params}} = \dots$ \triangleright compute gradient 5: $params - = learning_rate * d_loss_wrt_params$ 6: if stopping condition is met then return params 7: end if 8: 9: end for

Mini-batch Gradient Descent

Algorithm 2 STOCHASTIC GRADIENT DESCENT

1:	for $(x_i, y_i) \in \mathcal{D}_{train} \operatorname{do}$	
2:	\triangleright imagine an infinite generator that may repeat	
3:	\triangleright examples (if there is only a finite training set)	
4:	$loss = f(params, x_i, y_i)$	
5:	$d_{loss_wrt_params} = \dots$ \triangleright compute gradient	
6:	$params - = learning_rate * d_loss_wrt_params$	
7:	if stopping condition is met then return params	
8:	end if	
9:	end for	
Algorithm 3 MINIBATCH SGD		
-	f_{a} (f_{a} b f_{a}	

1: for $(x_batch, y_batch) \in train_batches do$ \triangleright imagine an infinite generator 2: \triangleright that may repeat examples 3: $loss = f(params, x_batch, y_batch)$ 4: $d_loss_wrt_params = \dots$ 5: \triangleright compute gradient $params - = learning_rate * d_loss_wrt_params$ 6: if stopping condition is met then return params 7: end if 8:

9: end for

Hyperparameters: Learning Rate

$$W_i \leftarrow W_i - \eta \frac{\partial \mathbf{E}(W_i)}{\partial W_i}$$
 learning rate

- constant learning rate (simplest solution)
- logarithmic grid search $(10^{-1}, 10^{-2}, ...)$
- decreasing learning rate over time:

$$\eta_t = \frac{\eta_0}{1+at}$$

For adaptive learning rate see: LeCun, Yann A et al. "Efficient backprop." *Neural networks: Tricks of the trade* (2012): 9-48.

Hyperparameters: Nonlinearity

f(x)

-1년 -3

-2

-1

0

х

1

2

3

Shrinkage

Hyperparameters: Weight Initialization

$$W \sim U \left[-\frac{\sqrt{6}}{\sqrt{n_j + n_{j+1}}}, \frac{\sqrt{6}}{\sqrt{n_j + n_{j+1}}} \right] \qquad \text{for tanh} \\ \text{activations} \\ W \sim U \left[-\frac{4\sqrt{6}}{\sqrt{n_j + n_{j+1}}}, \frac{4\sqrt{6}}{\sqrt{n_j + n_{j+1}}} \right] \qquad \text{for logistic activations}$$

Glorot, Xavier, and Yoshua Bengio. "Understanding the difficulty of training deep feedforward neural networks." *International Conference on Artificial Intelligence and Statistics* 2010: 249-256.

Hyperparameters: momentum

$$\Delta \theta_i(t) = v_i(t) = \alpha v_i(t-1) - \epsilon \frac{dE}{d\theta_i}(t)$$

momentum learning rate

Hinton, Geoffrey E. "A practical guide to training restricted boltzmann machines." *Neural Networks: Tricks of the Trade* (2012): 599-619.

Regularization

L1 vs L2 regularization

Shi, Jianing V et al. "Perceptual decision making "Through the Eyes" of a large-scale neural model of V1." *Frontiers in psychology* 4 (2013).

Convolutional Neural Networks (CNN)

dot product + bias $h_k = \tanh(W_k^T x + b_k)$

convolution + bias $h_{ij}^{k} = \tanh((W^{k} * x)_{ij} + b_{k})$

- Detects multiple motifs at each location
- The collection of units looking at the same patch is akin to a feature vector for that patch.
- The result is a 3D array, where each slice is a feature map.

Pooling subsampling

• Are deployed in many practical applications

 Image recognition, speech recognition, Google's and Baidu's photo taggers

• Have won several competitions

- ImageNet, Kaggle Facial Expression, Kaggle Multimodal Learning, German Traffic Signs, Connectomics, Handwriting....
- Are applicable to array data where nearby values are correlated
 - Images, sound, time-frequency representations, video, volumetric images, RGB-Depth images,.....
- One of the few deep models that can be trained purely supervised

Arabic Handwriting Recognition

Margner, Volker, and Haikal El Abed. "Arabic handwriting recognition competition." *Document Analysis and Recognition, 2007. ICDAR 2007. Ninth International Conference on* 23 Sep. 2007: 1274-1278.

StreetView House Numbers [2011]

94.3 % accuracy

Netzer, Yuval et al. "Reading digits in natural images with unsupervised feature learning." *NIPS workshop on deep learning and unsupervised feature learning* 2011: 4.

Traffic Sign Contest, Silicon Valley, 2011 (IDSIA)

0.56% ERROR

- first place
- twice better than humans
- three times better than the closest artificial competitor
- six times better than the best non-neural method

Pedestrian Detection [2013]: INRIA datasets and others (NYU)

Volumetric brain image segmentation [2009] Connectomics (IDSIA, MIT)

Turaga, Srinivas C et al. "Convolutional networks can learn to generate affinity graphs for image segmentation." *Neural Computation* 22.2 (2010): 511-538. Human Action Recognition [2011] Hollywood II dataset (Stanford)

Le, Quoc V et al. "Learning hierarchical invariant spatio-temporal features for action recognition with independent subspace analysis." *Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on* 20 Jun. 2011: 3361-3368.

Object Recognition [2012] ImageNet competition

Error rate: 15% (whenever correct class isn't in top 5) Previous state of the art: 25% error

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E Hinton. "Imagenet classification with deep convolutional neural networks." *Advances in neural information processing systems* 2012: 1097-1105.

Scene Parsing [2012]

Farabet, Clément et al. "Scene parsing with multiscale feature learning, purity trees, and optimal covers." *arXiv preprint arXiv:1202.2160* (2012).

Scene Parsing from depth images [2013]

Results using the Multiscale Convnet with depth information

Couprie, Camille et al. "Indoor semantic segmentation using depth information." *arXiv preprint arXiv:* 1301.3572 (2013).

Breast cancer cell mitosis detection [2011] MITOS (IDSIA)

Cireşan, Dan C et al. "Mitosis detection in breast cancer histology images with deep neural networks." *Medical Image Computing and Computer-Assisted Intervention–MICCAI 2013* (2013): 411-418.

E

ESCUELA DE CIENCIAS INFORMÁTICAS

Métodos Actuales de Machine Learning **Neural Networks** http://www.cifasis-conicet.gov.ar/granitto/ECI2014/

ImageNet Classification with Deep Convolutional Neural Networks

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E Hinton. "Imagenet classification with deep convolutional neural networks." *Advances in neural information processing systems* 2012: 1097-1105.

ImageNet Classification with Deep Convolutional Neural Networks

Alex Krizhevsky University of Toronto kriz@cs.utoronto.ca Ilya Sutskever University of Toronto ilya@cs.utoronto.ca Geoffrey E. Hinton University of Toronto hinton@cs.utoronto.ca

A four-layer convolutional neural network with **ReLUs (solid line)** reaches a 25% training error rate on CIFAR-10 six times faster than an equivalent network with **tanh neurons** (dashed line).

Networks with ReLUs consistently learn several times faster than equivalents with saturating neurons.

Zeiler, Matthew D, and Rob Fergus. "Visualizing and understanding convolutional neural networks." *arXiv preprint arXiv:1311.2901* (2013).

OverFeat: Object Recognizer, Feature Extractor

URL: <u>http://cilvr.nyu.edu/doku.php?id=software:overfeat:start</u>

- OverFeat was trained on the ImageNet dataset and participated in the **ImageNet 2013 competition**.
- This package allows researchers to use OverFeat to **recognize images and extract features**.
- A library with C++ source code is provided for running the OverFeat convolutional network, together with wrappers in various scripting languages (Python, Lua, Matlab coming soon).
- OverFeat was trained with the Torch7 package (http://www.torch.ch). This package provides tools to run the network in a standalone fashion. The training code is not part of this package.

Pierre Sermanet, David Eigen, Xiang Zhang, Michael Mathieu, Rob Fergus, Yann LeCun: "OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks", International Conference on Learning Representations (ICLR 2014), April 2014. (OpenReview.net), (arXiv:1312.6229), (BibTeX).

http://deeplearning.cs.toronto.edu/

Toronto Deep Learning Den	nos	Image Classification Image to Text
Enter an image URL		Upload an image
Image URL	Sele	Classiful Detrievel
Classilyi Retrievei		Classilyi Retrievei

Greedy layer-wise training of deep networks

Hinton, Geoffrey E, and Ruslan R Salakhutdinov. "Reducing the dimensionality of data with neural networks." *Science* 313.5786 (2006): 504-507.

Hinton, Geoffrey, Simon Osindero, and Yee-Whye Teh. "A fast learning algorithm for deep belief nets." *Neural computation* 18.7 (2006): 1527-1554.

Bengio, Yoshua et al. "Greedy layer-wise training of deep networks." *Advances in neural information processing systems* 19 (2007): 153.

http://www.cifasis-conicet.gov.ar/granitto/ECI2014/

Auto-Encoders

Auto-Encoder

Manifold Hypothesis

Additional prior: data density concentrates near low-dimensional manifolds

Denoising Auto-Encoders

Contractive Auto-Encoders

First-order contractive Auto-Encoder $\mathcal{J}_{CAE}(\theta) = \sum_{x \in D_n} L(x, g(f(x))) + \lambda \|J_f(x)\|^2$

Higher order regularization:

Rifai, Salah, et al. "Higher order contractive auto-encoder." *Machine Learning and Knowledge Discovery in Databases*. Springer Berlin Heidelberg, 2011. 645-660.

Contractive Auto-Encoders

Rifai, Salah, et al. "Higher order contractive auto-encoder." *Machine Learning and Knowledge Discovery in Databases*. Springer Berlin Heidelberg, 2011. 645-660.

Predictive Sparse Decomposition (PSD)

	<section-header><section-header><section-header><section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header>		EXAMPLE AND A CONTRACT OF A CO		First de la constant	$\label{eq:starting} \left\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	
111년 - 노는 1 이십니 이십니 이십니 이십니 니십니 이십니 전에 가 다 다 가지 않니다 지하다 이십니 신십니 전에 가지 않는 것이 다 지하다 가지 않는 것이 가지 않는 것이 다 다 다 다 다 다 다 다 다 다 다 다 다 다 다 다 다 다	• Energy: $E(Y^i, Z; W_d) = $ • Optimal Code $Z^i = argmin_i E$ • Free Energy: $F(Y^i; W_d) = F(Z)$	$\begin{aligned} Y^{i} - W_{d} Z \ ^{2} + \lambda \sum_{j} z_{j} \\ (Y^{i}, z; W_{d}) \\ Z^{i}) = \min_{z} E(Y^{i}, z; W_{d}) \end{aligned}$		■ IST & FIST & Bargher eigereiten fast owner ger to optimal optimate optim	structured variable given constraint pmn learsthing exact training broth of global given broth decomposition inference upper of the structure output	Learning Hierarchies of Invariant Features Description With the standard standard With the standard standard With the standard standard With the standard standard standard With the standard s	

Sparse Coding

$$E(Y^{i}, Z) = ||Y^{i} - W_{d}Z||^{2} + \lambda \sum_{j} |z_{j}|$$

Inference is slow:

 $Y \rightarrow \hat{Z} = argmin_{z} E(Y, Z)$

Olshausen, Bruno A, and David J Field. "Sparse coding with an overcomplete basis set: A strategy employed by V1?." *Vision research* 37.23 (1997): 3311-3325.

Predictive Sparse Decomposition (PSD)

$$E(Y^{i}, Z) = ||Y^{i} - W_{d}Z||^{2} + ||Z - g_{e}(W_{e}, Y^{i})||^{2} + \lambda \sum_{j} |z_{j}|$$

-10 -8

-6 -4 -2

0

Kavukcuoglu, Koray, Marc'Aurelio Ranzato, and Yann LeCun. "Fast inference in sparse coding algorithms with applications to object recognition." *arXiv preprint arXiv:1010.3467* (2008).

PSD: Basis Functions on MNIST

Basis functions (and encoder matrix) are digit parts

Kavukcuoglu, Koray, Marc'Aurelio Ranzato, and Yann LeCun. "Fast inference in sparse coding algorithms with applications to object recognition." *arXiv preprint arXiv:1010.3467* (2010).

PSD: Basis Functions on Natural Images Patches

Basis functions are V1-like receptive fields

Kavukcuoglu, Koray, Marc'Aurelio Ranzato, and Yann LeCun. "Fast inference in sparse coding algorithms with applications to object recognition." *arXiv preprint arXiv:1010.3467* (2010).

Energy-Based Unsupervised Learning

	h the sense the		$(1+1)^{(1+1)}$	Fig. 1. The for the second sec	() ($p(x) = \sum_{h} p(x,h) =$	$\frac{q(x)}{Z} = \frac{\sum_{h} e^{-E(x,h)}}{Z}$	
W W	Deep Belief Network Deep Bolzmann Machine U U U U U U U U U U U U U	State Stat	$= -\sum_{\mathbf{x}} p(\mathbf{k}) + \eta \frac{\partial \Gamma(\mathbf{x}, \mathbf{k})}{\partial u_0} + \sum_{\mathbf{x}} p(\mathbf{x}, \mathbf{k}) \frac{\partial \Gamma(\mathbf{x}, \mathbf{k})}{\partial u_0}$ $= \sum_{\mathbf{x}} p(\mathbf{k}) + \eta \lambda_{0T_0} \sum_{\mathbf{x}} p(\mathbf{x}) \sum_{\mathbf{x}} p(\mathbf{k}) + \eta \lambda_{0T_0}$ $= \frac{p(\mathbf{k}) - \sum_{\mathbf{x}} p(\mathbf{x}) \frac{p(\mathbf{k}) - p(\mathbf{k}) - p(\mathbf{k})}{p(\mathbf{k}) - p(\mathbf{k}) - p(\mathbf{k})}, (20)$				$\begin{split} P(v) &= \frac{e^{-F\mathcal{E}(v)}}{Z} = \sum_{b} P(v, b) = \frac{\sum_{k} e^{-\mathcal{E}(v, b)}}{Z} \\ FE(v) &= -\log \sum_{k} e^{-\mathcal{E}(v, k)} \end{split}$	Recent Applications of Deep Boltzmann Machines Russ Stabhollow		$\begin{split} p(h v) &= \prod_i p(h_i v) \\ p(v h) &= \prod_j p(v_j h). \end{split}$
$\begin{aligned} \Delta w_{ij} &= \eta \frac{1}{m} \sum_{k=1}^{m} x_i p_j - \eta \frac{1}{m} \sum_{k=1}^{m} x_i p_j - (p_i p_j^2) \\ &= \eta \left(\langle x, y_i \rangle - (p_i p_j^2) \right) \\ \Delta b_j &= \eta \left(\langle y_i \rangle - (p_j^2) \right) \\ \Delta c_i &= \eta \left(\langle x_i \rangle - (p_j) \right) \end{aligned}$					hilp consected Boltzmann stachine	kaly one etcl plat (LC-DI)	Machine Learning Z	$=\sum_{h}\sum_{x}e^{b^{T}x+h^{T}Wx+c^{T}h}$		
$\gamma(v_i = 1 \mathbf{h}) = \sigma(\sum_j w_{ij}h_j + \gamma(h_i = 1 \mathbf{v}) = \sigma(\sum_i w_{ij}v_i + \gamma(h_i = 1 \mathbf{v})) = \sigma(\sum_i w_{ij}v_i + \gamma(h_i = 1 \mathbf{v}))$	b_i) $P(b_j = 1 v) = \text{sigmoid}(b_j + \sum_i W_{ij}v_i)$ c_j) $P(v_i = 1 h) = \text{sigmoid}(c_i + \sum_j W_{ij}b_j)$	Compression Internet Pressonse Manuel Primer Image + Filter	International Control of Control	$E(v,h) = -\sum_{i}^{n} a_{i}v_{i} - \sum_{j}^{n} b_{j}h_{j}$	$=\sum_{i}^{n}\sum_{j}^{m}w_{ij}v_{i}h_{j}$	$\begin{array}{c} & & \\$			$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\ell = \frac{1}{N} \sum_{x^{(i)} \in D} \log p(x^{(i)})$ $\ell(\theta, D) = -\mathcal{L}(\theta, D)$

Energy-Based Unsupervised Learning

Learning an energy function that takes:

- low values on the data manifold
- higher values everywhere else

Capturing Dependencies Between Variables with an Energy Function

The energy surface is a "contrast function" that takes low values on the data manifold, and higher values everywhere else

- Special case: energy = negative log density
- Example: the samples live in the manifold $Y_2 = (Y_1)^2$

Capturing Dependencies Between Variables with an Energy Function

The energy can be interpreted as an unnormalized negative log density Gibbs distribution: Probability proportional to exp(-energy)

- Beta parameter is akin to an inverse temperature Don't compute probabilities unless you absolutely have to
 - Because the denominator is often intractable

Learning the Energy Function

parameterized energy function E(Y,W)

- Make the energy low on the samples
- Make the energy higher everywhere else
- Making the energy low on the samples is easy
- But how do we make it higher everywhere else?

Max Likelihood

Max Likelihood

Contrastive Divergence (CD)

Basic Idea:

- Pick a training sample, lower the energy at that point
- From the sample, move down in the energy surface with noise
- Stop after a while
- Push up on the energy of the point where we stopped
- This creates grooves in the energy surface around data manifolds

Persistent CD: use a bunch of "particles" and remember their positions

- Make them roll down the energy surface with noise
- Push up on the energy wherever they are
- Faster than CD

Restricted Boltzmann Machines (RBM)

	h h h h h h h h h h h h h h h h h h h		DBN structure	For a first law back of a second seco	ja a seriesta de la constante		2052 7696 7293 3297 5887	$p(x) = \sum_{h} p(x, h) =$	$\frac{q(x)}{Z} = \frac{\sum_{h} e^{-E(x,h)}}{Z}$	
Å W	Deep Belief Network Deep Belief Network W ² W ²		$\begin{split} &\sum_{i} t _{i} \tau ^{2} \frac{\partial [\tau_{i}, h]}{\partial u_{i}} + \sum_{i} p(\tau_{i}, h) \frac{\partial [\tau(\tau, h)]}{\partial u_{i}} \\ &\sum_{i} p(h) \tau h\sigma_{i} - \sum_{i} p(\sigma) \sum_{i} p(\sigma) \sigma \sigma_{i} \\ &- p(H_{i} - 1) \sigma _{2} - \sum_{i} p(\sigma) e(H_{i} - 1) \sigma _{2} , (20) \end{split}$				$P(v) = \frac{e^{-FE(v)}}{Z} = \sum_{h} P(v, h) = \frac{\sum_{h} e^{-Z}}{Z}$ $FE(v) = -\log \sum_{h} e^{-E(v,h)}$	Recent Applications of Deep Boltzmann Machines Res Strahudeov		$\begin{split} p(h v) &= \prod_i p(h_i v) \\ p(v h) &= \prod_j p(v_j h). \end{split}$
$\begin{split} \Delta w_{ij} &= \eta \frac{1}{m} \sum_{k=1}^{m} x_i p_j - \eta \frac{1}{m} \sum_{k=1}^{m} x_i p_j - (p_i p_j^i) \\ &= \eta \left(\langle x, p_j \rangle - (p_i p_j^i) \right) \\ \Delta b_j &= \eta \left(\langle p_j \rangle - (p_j^i) \right) \\ \Delta c_i &= \eta \left(\langle x_i \rangle - \langle p_i \rangle \right) \end{split}$				**************************************	hily connected boltzmann machine	kelly constel DIM (LCODI)	Machine Learning	$Z = \sum_{h} \sum_{x} e^{b^T x + h^T W x + c^T h}$	0000000 + 0000000 + == == 0000000 + 0000000 + 0000000 + 0000000 +	
$^{2}(v_{i} = 1 \mathbf{h}) = \sigma(\sum_{j} w_{ij}h_{j} + \sigma(\sum_{i} w_{ij}v_{i} + \sigma(\sum_{i} w_{i}v_{i} + \sigma(\sum_{i} w_{i}v_{i}v_{i} + \sigma(\sum_{i} w_{i}v_{i} + \sigma(\sum_{i} w_{$	$ \begin{split} b_i) P(h_j = 1 v) = \text{sigmoid}(b_j + \sum_i W_{ij}v_i) \\ c_j) P(v_i = 1 h) = \text{sigmoid}(c_i + \sum_j W_{ij}h_j) \end{split}$	Compression Bar and Personae * Hann Laws Image + Filter Image + Filter	ment ment	$E(v,h) = -\sum_{i}^{n} a_{i}v_{i} - \sum_{j}^{m} b_{j}h_{j}$	$=\sum_{i}^{n}\sum_{j}^{m}w_{ij}v_{i}b_{j}$	$P(v,h) = \frac{1}{Z}e^{-E(v,h)}$			L(0.)	$\begin{split} \mathcal{D}) &= \frac{1}{N} \sum_{x^{(i)} \in \mathcal{D}} \log \ p(x^{(i)}) \\ \ell(\theta, \mathcal{D}) &= -\mathcal{L}(\theta, \mathcal{D}) \end{split}$

Restricted Boltzmann Machines (RBM)

Energy function

$$E(\mathbf{v}, \mathbf{h}) = -\sum_{i \in \text{visible}} a_i v_i - \sum_{j \in \text{hidden}} b_j h_j - \sum_{i,j} v_i h_j w_{ij}$$

$$p(\mathbf{v}, \mathbf{h}) = \frac{1}{Z} e^{-E(\mathbf{v}, \mathbf{h})}$$

$$Z = \sum_{\mathbf{v}, \mathbf{h}} e^{-E(\mathbf{v}, \mathbf{h})}$$

$$p(\mathbf{v}) = \frac{1}{Z} \sum_{\mathbf{h}} e^{-E(\mathbf{v}, \mathbf{h})}$$

$$\frac{\partial \log p(\mathbf{v})}{\partial w_{ij}} = \langle v_i h_j \rangle_{data} - \langle v_i h_j \rangle_{model}$$

$$\Delta w_{ij} = \epsilon(\langle v_i h_j \rangle_{data} - \langle v_i h_j \rangle_{model})$$
learning rate

Energy Based Models (EBM)

$$p(x) = \frac{e^{-E(x)} \longrightarrow \text{scalar energy}}{Z \longrightarrow \text{partition function}}$$
$$Z = \sum_{x} e^{-E(x)}$$

Log-likelihood
$$L(\theta, \mathcal{D}) = \frac{1}{N} \sum_{x^{(i)} \in \mathcal{D}} \log p(x^{(i)})$$

Negative Log-likelihood (NLL)
$$\ell(\theta, \mathcal{D}) = -L(\theta, \mathcal{D})$$

EBMs with Hidden Units

EBMs with Hidden Units

Restricted Boltzmann Machines (RBM)

Energy function

$$E(x,h) = -b^T x - c^T h - h^T W x$$

Free energy $\mathcal{F}(x) = -b^T x - \sum_i \log \sum_{h_i} e^{h_i (c_i + W_i x)}$

Conditional independence:

$$p(h|x) = \prod_{i} p(h_i|x) \qquad p(x|h) = \prod_{i} p(x_i|h)$$

RBMs with binary units

$$P(h_i = 1|x) = \text{sigmoid}(c_i + W_i x)$$

$$P(x_j = 1|h) = \text{sigmoid}(b_j + W_j^T x)$$

$$\mathcal{F}(x) = -b^T x - \sum_{i} \log \sum_{h_i \in \{0,1\}} e^{h_i (c_i + W_i x)}$$

$$\mathcal{F}(x) = -b^T x - \sum_i \log(1 + e^{c_i + W_i x})$$

Update Equations

Update Equations

$$\begin{bmatrix} -\frac{\partial \log p(x)}{\partial W_{ij}} &= E_x[p(h_i|x) \cdot x_j] - x_j \cdot \operatorname{sigmoid}(W_i \cdot x + c_i) \\ -\frac{\partial \log p(x)}{\partial c_i} &= E_x[p(h_i|x)] - \operatorname{sigmoid}(W_i \cdot x) \\ -\frac{\partial \log p(x)}{\partial b_j} &= E_x[p(x_j|h)] - x_j & \text{Log-likelihood} \\ L(\theta, \mathcal{D}) &= \frac{1}{N} \sum_{x^{(i)} \in \mathcal{D}} \log p(x^{(i)}) \\ \text{Negative Log-likelihood (NLL)} \\ \ell(\theta, \mathcal{D}) &= -L(\theta, \mathcal{D}) \end{bmatrix}$$

Sampling in an RBM

Markov chain step

$$h^{(n+1)} \sim \operatorname{sigmoid}(W^T x^{(n)} + c)$$

 $x^{(n+1)} \sim \operatorname{sigmoid}(W h^{(n+1)} + b)$

Contrastive Divergence (CD-k)

➡ Initialize the Markov chain with a training example

➡ CD does not wait for the chain to converge.

Samples are obtained after only k-steps of Gibbs sampling

Deep Belief Networks (DBN)

$$P(x, h^1, \dots, h^\ell) = \left(\prod_{k=0}^{\ell-2} P(h^k | h^{k+1})\right) P(h^{\ell-1}, h^\ell)$$

Deep Belief Networks (DBN)

Hinton, G. E., Osindero, S. and Teh, Y. (2006) A fast learning algorithm for deep belief nets. Neural Computation 18, pp 1527-1554. [ps.gz] [pdf]

Deep Belief Networks (DBN)

Multiresolution Deep Belief Networks **(AISTATS 2012)** *Yichuan Tang* and *Abdelrahman Mohamed* Proceedings of the 15th International Conference on Artificial Intelligence and Statistics (AISTATS), 2012, La Palma, Canary Islands [pdf] [poster] [bibtex]

Samples drawn from MrDBN. Starting at the top row, from left to right, each sample is generated after 100 steps of block Gibbs sampling. Note the level of details and the ability of the MCMC chain to mix rapidly.

Dropout: A Simple Way to Prevent Neural Networks from Overfitting

Dropout Neural Net Model

(a) Standard Neural Net

(b) After applying dropout.

Dropout Neural Net Model. Left: A standard neural net with 2 hidden layers. Right: An example of a thinned net produced by applying dropout to the network on the left. Crossed units have been dropped.

Dropout units

Left: A unit at training time that is present with probability p and is connected to units in the next layer with weights **w**. **Right**: At test time, the unit is always present and the weights are multiplied by p. The output at test time is same as the expected output at training time.

MNIST results

Method	Unit Type	Architecture	Error %
Standard Neural Net (Simard et al., 2003)	Logistic	2 layers, 800 units	1.60
SVM Gaussian kernel	\mathbf{NA}	NA	1.40
Dropout NN	Logistic	3 layers, 1024 units	1.35
Dropout NN	ReLU	3 layers, 1024 units	1.25
Dropout $NN + max$ -norm constraint	ReLU	3 layers, 1024 units	1.06
Dropout $NN + max$ -norm constraint	ReLU	3 layers, 2048 units	1.04
Dropout $NN + max$ -norm constraint	ReLU	2 layers, 4096 units	1.01
Dropout NN $+$ max-norm constraint	ReLU	2 layers, 8192 units	0.95
Dropout NN + max-norm constraint (Goodfellow et al., 2013)	Maxout	2 layers, (5×240) units	0.94
DBN + finetuning (Hinton and Salakhutdinov, 2006)	Logistic	500-500-2000	1.18
DBM + finetuning (Salakhutdinov and Hinton, 2009)	Logistic	500-500-2000	0.96
DBN + dropout finetuning	Logistic	500-500-2000	0.92
DBM + dropout finetuning	Logistic	500-500-2000	0.79

Dropout: Robustness

Test error for different architectures with and without dropout. The networks have 2 to 4 hidden layers each with 1024 to 2048 units.

Srivastava, Nitish, et al. "Dropout: A Simple Way to Prevent Neural Networks from Overfitting." *Journal of Machine Learning Research* 15 (2014): 1929-1958.

Dropout: Street View House Numbers

Method	Error %
Binary Features (WDCH) (Netzer et al., 2011)	36.7
HOG (Netzer et al., 2011)	15.0
Stacked Sparse Autoencoders (Netzer et al., 2011)	10.3
KMeans (Netzer et al., 2011)	9.4
Multi-stage Conv Net with average pooling (Sermanet et al., 2012)	9.06
Multi-stage Conv Net + L2 pooling (Sermanet et al., 2012)	5.36
Multi-stage Conv Net + L4 pooling + padding (Sermanet et al., 2012)	4.90
Conv Net + max-pooling	3.95
Conv Net + max pooling + dropout in fully connected layers	3.02
Conv Net + stochastic pooling (Zeiler and Fergus, 2013)	2.80
Conv Net + max pooling + dropout in all layers	2.55
Conv Net $+$ maxout (Goodfellow et al., 2013)	2.47
Human Performance	2.0

Table 3: Results on the Street View House Numbers data set.

CIFAR-10 and CIFAR-100 datasets

The CIFAR-10 dataset consists of 60000 32x32 colour images in 10 classes, with 6000 images per class. There are 50000 training images and 10000 test images.

Dropout: CIFAR datasets

Method	CIFAR-10	CIFAR-100
Conv Net $+$ max pooling (hand tuned)	15.60	43.48
Conv Net $+$ stochastic pooling (Zeiler and Fergus, 2013)	15.13	42.51
Conv Net $+$ max pooling (Snoek et al., 2012)	14.98	-
Conv Net + max pooling + dropout fully connected layers	14.32	41.26
Conv Net + max pooling + dropout in all layers	12.61	37.20
Conv Net $+$ maxout (Goodfellow et al., 2013)	11.68	38.57

Error rates on CIFAR-10 and CIFAR-100.

Dropout: ImageNet

Model	Top-1	Top-5
Sparse Coding (Lin et al., 2010)	47.1	28.2
SIFT + Fisher Vectors (Sanchez and Perronnin, 2011)	45.7	25.7
Conv Net + dropout (Krizhevsky et al., 2012)	37.5	17.0

Results on the ILSVRC-2010 test set

Dropout: TIMIT

A standard speech benchmark for clean speech recognition.

Method	Phone Error Rate%
NN (6 layers) (Mohamed et al., 2010)	23.4
Dropout INN (6 layers)	21.8
DBN-pretrained NN (4 layers)	22.7
DBN-pretrained NN (6 layers) (Mohamed et al., 2010)	22.4
DBN-pretrained NN (8 layers) (Mohamed et al., 2010)	20.7
mcRBM-DBN-pretrained NN (5 layers) (Dahl et al., 2010)	20.5
DBN-pretrained NN $(4 \text{ layers}) + \text{dropout}$	19.7
DBN-pretrained NN (8 layers) $+$ dropout	19.7

Useful Links

Theano: Python-based learning library

Main page: <u>http://deeplearning.net/software/theano/</u>

Theano Tutorial: <u>http://deeplearning.net/software/theano/tutorial/</u> Deep Learning Tutorial: <u>http://deeplearning.net/tutorial/</u>

Torch7: learning library that supports neural net training Main page: <u>http://www.torch.ch</u> Tutorial: <u>http://code.cogbits.com/wiki/doku.php</u>

OverFeat: Object Recognizer, Feature Extractor URL: http://cilvr.nyu.edu/doku.php?id=software:overfeat:start

EBLearn: C++ Library with convnet support by P. Sermanet Main page: <u>http://eblearn.sourceforge.net/</u>

Links

Yann LeCun: Google+ profile

URL: <u>https://plus.google.com/+YannLeCunPhD</u>

(2013) Deep Learning Tutorial, ICML 2013

PDF: http://www.cs.nyu.edu/~yann/talks/lecun-ranzato-icml2013.pdf

Online video (Part 1): <u>http://techtalks.tv/talks/deep-learning/58122/</u>

Online video (Part 2): <u>http://techtalks.tv/talks/energy-based-unsupervised-learning/58128/</u>

Geoffrey E. Hinton: Home page (University of Toronto) URL: <u>http://www.cs.toronto.edu/~hinton/</u>

(2012) Brains, Sex and Machine Learning (Google Tech Talks) Online video: <u>http://youtu.be/DleXA5ADG78</u>

Links

Yoshua Bengio: Home page (Université de Montréal)

URL: <u>http://www.iro.umontreal.ca/~bengioy/</u>

(2013) UCL Masterclass lectures

URL: <u>http://www.csml.ucl.ac.uk/events/series/15</u>

1. Deep Learning of Representations (video) (pdf)

2. Non-local Manifold Learning by Regularized Auto-encoders (video) (pdf)

3. Generative Stochastic Networks: How to Get Rid of Approximate Inference

over Latent Variables (video) (pdf)

Links

Juergen Schmidhuber: Home page (IDSIA)

URL: <u>http://www.idsia.ch/~juergen/</u>

Google+ profile: https://plus.google.com/10084985654000067209/

(2014) 1st Züri Machine Learning Meetup

URL: <u>http://www.meetup.com/Zurich-Machine-Learning/events/166282162/</u> **Deep Learning** (video) (pdf)