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1 Softmax Regression

Source: Ian Goodfellow. “Pylearn2 Tutorial: Softmax regression”. http://

nbviewer.ipython.org/github/lisa-lab/pylearn2/blob/master/pylearn2/

scripts/tutorials/softmax_regression/softmax_regression.ipynb

Softmax regression is a type of classification model (so the “regression” in the
name is really a misnomer), which means it is a pattern recognition algorithm
that maps input patterns to categories. Softmax regression is a generalization
of logistic regression to multiple categories.

Let’s define some basic terms. First, we’ll use the variable x to represent the
input to the softmax regression model. We’ll use the variable y to represent the
output category. Let y be a non-negative integer, such that 0 ≤ y < k , where k
is the number of categories x may belong to. We interpret y as being a numeric
code identifying a category, e.g., 0 = cat, 1 = dog, 2 = airplane, etc.

The job of the softmax regression classifier is to predict the probability of x
belonging to each class. i.e, we want to be able to compute p(y = i|x) for all k
possible values of i.

The role of a parametric model like softmax regression is to define a set of
parameters and describe how they map to functions f defining p(y|x). In the
case of softmax regression, the model assumes that the log probability of y = i
is an affine function of the input x, up to some constant c(x). c(x) is defined to
be whatever constant is needed to make the distribution add up to 1.

To make this more formal, let p(y) be written as a vector [p(y = 0), p(y =
1), . . . , p(y = k−1)]T . Assume that x can be represented as a vector of numbers
(for example, we will regard each pixel of an grayscale image as being represented
by a number in [0, 1], and we will turn the 2D array of the image into a vector).
Then the assumption that softmax regression makes is that

log p(y|x) = xTW + b+ c(x)

where W is a matrix and b is a vector. Note that c(x) is just a scalar but here I
am adding it to a vector. I’m using numpy broadcasting rules in my math here,
so this means to add c(x) to every element of the vector.

W and b are the parameters of the model, and determine how inputs are
mapped to output categories. We usually call W the “weights” and b the “bi-
ases”.
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By doing some algebra, using the constraint that p(y) must add up to 1, we
get

p(y|x) =
exp(xTW + b)∑
i exp(x

TW + b)i
= softmax(xTW + b)

where softmax is the softmax activation function.

1.1 The basic theory of how softmax regression training
works

Of course, the softmax model will only assign x to the right category if its
parameters have been adjusted to make them specify the right mapping. To do
this we need to train the model.

The basic idea is that we have a collection of training examples, D. Each
example is an (x, y) tuple. We will fit the model to the training set, so that
when run on the training data, it outputs a good estimate of the probability
distribution over y for all of the x’s.

One way to fit the model is maximum likelihood estimation. Suppose we
draw a category variable ŷ from our model’s distribution p(y|x) for every training
example independently. We want to maximize the probability of all of those
labels being correct. To do this, we maximize the function

J (D,W, b) =
∏
x,y∈D

p(y|x).

That function involves lots of multiplication, of possibly very small numbers
(note that the softmax activation function guarantees none of them will ever be
exactly zero). Multiplying together many small numbers can result in numerical
underflow. In practice, we usually take the logarithm of this function to avoid
underflow. Since the logarithm is a monotically increasing function, it doesn’t
change which parameter value is optimal. It does get rid of the multiplication
though:

J (D,W, b) =
∑
x,y∈D

log p(y|x).

Many different algorithms can maximize J . For this case, we can use an
algorithm called Nonlinear Conjugate Gradient Descent to minimize −J . In
the case of softmax regression, maximizing J is a convex optimization problem
so any optimization algorithm should find the same solution.

One problem with maximium likelihood estimation is that it can suffer from
a problem called overfitting. The basic intuition is that the model can memo-
rize patterns in the training set that are specific to the training examples, i.e.
patterns that are spurious and not indicative of the correct way to categorize
new, previously unseen inputs. One way to prevent this is to use early stopping.
Most optimization methods are iterative, in that they try out several values of
W and b gradually looking for the best one. Early stopping refers to stopping
this search before finding the absolute best values on the training set. If we
start with W close to the origin, then stopping early means that W will not
travel as far from the origin as it would if we ran the optimization procedure to
completion. Early stopping corresponds to assuming that the correlations be-
tween input features and output categories are not as strong as pure maximum
likelihood estimation would determine them to be.
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In order to pick the right point in time to stop, we divide the training set
into two subsets: one that we will actually train on, and one that we use to see
how well the model is generalizing to new data, then “validation set”. The idea
is to return the model that does the best at classifying the validation set, rather
than the model that assigns the highest probability to the training set.

2 Multilayer Perceptrons

Source: Ian Goodfellow. “Pylearn2 Tutorial: Multilayer Perceptron”. http://

nbviewer.ipython.org/github/lisa-lab/pylearn2/blob/master/pylearn2/

scripts/tutorials/multilayer_perceptron/multilayer_perceptron.ipynb

2.1 Review of softmax regression, and how MLPs are sim-
ilar

In Sec. 1, we saw how softmax regression is a classification model that learns
to map an input vector x to a probability distribution p(y|x) where y is a
categorical value with k different values. We then described how a dataset D of
(x, y) tuples could be used to train a softmax regression model by maximizing
the log likelihood, ∑

x,y∈D
log p(y|x).

A multilayer perceptron (MLP or Artificial Neural Network - ANN) is a
very general machine learning model. In many cases, we can think of it as
mapping x to p(y|x), and train it by maximizing the log likelihood. We’ll start
with that basic perspective, because of its similarity to softmax regression. (It
is, however, possible to interpret the output of a multiplayer perceptron non-
probabilistically, to use it for regression rather than classification, and to train
it by optimizing functions other than the log likelihood).

Everything we described above is still relevant to the MLP. However, there
is one more fact about softmax regression that does not apply to the MLP.
Specifically, softmax regression assumes that

p(y|x) =
exp(xTW + b)∑
i exp(x

TW + b)i
= softmax(xTW + b).

The MLP makes a different assumption about the functional form of p(y|x).

2.2 The multilayer perceptron model

The multilayer perceptron model assumption is very weak. Essentially, the as-
sumption is that the relationship between inputs and outputs can be represented
by the composition of several simpler functions. Each function being composed
can be thought of as another “layer” or stage of processing. The number of
compositions determines the “depth” of the model.

Suppose we have a sequence of functions implementing the layers, g1, g2, . . . , gL.
Then the output of our MLP is

f(x) = gL(gL−1(. . . g2(g1(x)) . . . )).
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Figure 1: An MLP (or Artificial Neural Network - ANN) with a single hidden
layer

In the first example we will use just two layers. The final layer will be

g2(g1) = softmax(gT1 W
(2) + b(2))

so we can think of this model as using g1 to transform x into a different space,
then doing softmax regression in that space. The vector h(x) = g1(x) constitutes
the hidden layer. For this layer, we will use an affine transform followed by
elementwise-application of the logistic sigmoid function, σ(z) = 1

1+exp(−z) . This

is a very commonly used type of layer in multilayer perceptrons. Putting it all
together, we get

g1(x) = σ(xTW (1) + b(1)).

W (1) ∈ RD×Dh is the weight matrix connecting the input vector x to the

hidden layer. Each column W
(1)
·i represents the weights from the input units

to the i-th hidden unit. Typical choices for nonlinear elementwise function also
include tanh(x) which typically yields to faster training (and sometimes also to
better local minima). Both the sigmoid and tanh are scalar-to-scalar functions
but their natural extension to vectors and tensors consists in applying them
element-wise (e.g. separately on each element of the vector, yielding a same-
size vector).

The full model is thus

f(x) = softmax
(
σ(xTW (1) + b(1))TW (2) + b(2)

)
.

An MLP with a single hidden layer can be represented graphically as in Fig.
1.

If we interpret f(x) as defining p(y|x), it makes sense to train the parameters
W (1), W (2), b(1), and b(2) by maximizing the log likelihood of the training data.
For MLPs, we use Stochastic Gradient Descent with minibatches. Obtaining the
gradients can be achieved through the backpropagation algorithm (a special case
of the chain-rule of derivation). Thankfully, since Theano performs automatic
differentation, we will not need to cover this in the tutorial.

2.3 Some beneficial properties of MLPs

An obvious problem with softmax regression and other linear classifiers is that
linear functions are very simple. They prevent solutions to even very simple
classification problems, such as the class of 2 bit patterns whose XOR is true.
XOR is true when x = [1, 0] or x = [0, 1] but not when x = [0, 0] or x = [1, 1].
Suppose we draw a line that separates [0, 0] from [0, 1]. Then it must pass
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through some point [0, p]. We require that this line also pass through [q, 1] in
order to separate [0, 1] from [1, 1]. But this means it slope must be negative and
its x-intercept must be negative. Since a line only has one x intercept, it does
not pass between [0, 0] and [1, 0]. Those two points belong to different classes,
so any linear classifier must fail.

An MLP solves this problem by introducing extra stages of processing. In
our two layer example, suppose the dimensionality of the first layer is 2. We
call the outputs of this layer “hidden units” because they are neither inputs
nor outputs of the system; they are unobserved variables that the network must
decide what to do with. The MLP can set one of these hidden units to be active
when the sum of the two input variables is less than 1. It can set the other to
be active when the sum of the two input variables is greater than 1. It can then
set the output unit to be active by default, and to deactivate when either of the
two hidden variables is active.

More generally, an MLP with one sufficient large hidden layer can represent
any function. This result is known as the “universal approximator theorem.”

Another advantage of MLPs is that they can be made deeper and deeper,
rather than just wider and wider. Many functions can be represented more
efficiently (using fewer parameters) with a deep architecture than with a wide
one. Using fewer parameters is beneficial both because the MLP takes less
memory to represent, but also because the parameters may be estimated more
accurately from a smaller amount of data.

2.4 Some detrimental properties of MLPs

Unfortunately, just because an MLP can represent any function does not mean
that it will learn to represent the right function. The problem of overfitting can
still make the MLP perform badly on the test set even if it classifies the training
set perfectly. While larger MLPs are capable of fitting more complicated training
sets, they are also likely to overfit worse than smaller MLPs.

A related issue with MLPs is that they have many configuration options.
The model itself imposes design decisions such as what type of function to use
for each layer, the dimensionality of each layer. Also, the log likelihood is no
longer generally concave, so the choice of optimization procedure matters more
than it did with softmax regression. These configuration options are known
as “hyperparameters”. Choosing the right hyperparameters is an open and
exciting research problem.

2.5 Tips and Tricks for training MLPs

Source: LISA lab, University of Montreal. DeepLearning 0.1 Documentation:
Multilayer Perceptron. http://deeplearning.net/tutorial/mlp.html

There are several hyper-parameters in the above code, which are not (and,
generally speaking, cannot be) optimized by gradient descent. Strictly speaking,
finding an optimal set of values for these hyper-parameters is not a feasible
problem. First, we can’t simply optimize each of them independently. Second,
we cannot readily apply gradient techniques that we described previously (partly
because some parameters are discrete values and others are real-valued). Third,
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the optimization problem is not convex and finding a (local) minimum would
involve a non-trivial amount of work.

The good news is that over the last 25 years, researchers have devised various
rules of thumb for choosing hyper-parameters in a neural network. A very good
overview of these tricks can be found in Efficient BackProp by Yann LeCun,
Leon Bottou, Genevieve Orr, and Klaus-Robert Mueller. In here, we summarize
the same issues, with an emphasis on the parameters and techniques that we
actually used in our code.

Nonlinearity

Two of the most common ones are the sigmoid and the tanh function. Nonlin-
earities that are symmetric around the origin are preferred because they tend
to produce zero-mean inputs to the next layer (which is a desirable property).
Empirically, we have observed that the tanh has better convergence properties.

Weight initialization

At initialization we want the weights to be small enough around the origin so
that the activation function operates in its linear regime, where gradients are the
largest. Other desirable properties, especially for deep networks, are to conserve
variance of the activation as well as variance of back-propagated gradients from
layer to layer. This allows information to flow well upward and downward in the
network and reduces discrepancies between layers. Under some assumptions, a
compromise between these two constraints leads to the following initialization:
For tanh activation function results obtained in [4] show that the interval should

be [−
√

6
fanin+fanout

,
√

6
fanin+fanout

], where fanin is the number of units in the

(i − 1)-th layer, and fanout is the number of units in the i-th layer. For the

sigmoid function the interval is [−4
√

6
fanin+fanout

, 4
√

6
fanin+fanout

].

Learning rate

There is a great deal of literature on choosing a good learning rate. The simplest
solution is to simply have a constant rate. Rule of thumb: try several log-spaced
values (10−1, 10−2, . . . ) and narrow the (logarithmic) grid search to the region
where you obtain the lowest validation error.

Decreasing the learning rate over time is sometimes a good idea. One simple
rule for doing that is µ0

1+at where µ0 is the initial rate (chosen, perhaps, using
the grid search technique explained above), a is a so-called “decrease constant”
which controls the rate at which the learning rate decreases (typically, a smaller
positive number, 10−2 and smaller) and t is the epoch/stage.

In Efficient BackProp by Yann LeCun, Leon Bottou, Genevieve Orr, and
Klaus-Robert Muellers. authors detail procedures for choosing a learning rate
for each parameter (weight) in our network and for choosing them adaptively
based on the error of the classifier.

Number of hidden units

This hyper-parameter is very much dataset-dependent. Vaguely speaking, the
more complicated the input distribution is, the more capacity the network will
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require to model it, and so the larger the number of hidden units that will
be needed (note that the number of weights in a layer, perhaps a more direct
measure of capacity, is D×Dh (recall D is the number of inputs and Dh is the
number of hidden units).

Unless we employ some regularization scheme (early stopping or L1/L2
penalties), a typical number of hidden units vs. generalization performance
graph will be U-shaped.

Regularization parameter

Typical values to try for the L1/L2 regularization parameter λ are (10−2, 10−3, . . . ).
In the framework that we described so far, optimizing this parameter will not
lead to significantly better solutions, but is worth exploring nonetheless.

3 Stochastic Gradient Descent

Source: LISA lab, University of Montreal. DeepLearning 0.1 Documentation:
Getting Started. http://deeplearning.net/tutorial/gettingstarted.html

What is ordinary gradient descent? it is a simple algorithm in which we
repeatedly make small steps downward on an error surface defined by a loss
function of some parameters. For the purpose of ordinary gradient descent
we consider that the training data is rolled into the loss function. Then the
pseudocode of this algorithm can be described as :

Algorithm 1 GRADIENT DESCENT

while True do
loss = f(params)
d loss wrt params = ... . compute gradient
params -= learning rate * d loss wrt params

if stopping condition is met then return params
end if

end while

Stochastic gradient descent (SGD) works according to the same principles as
ordinary gradient descent, but proceeds more quickly by estimating the gradient
from just a few examples at a time instead of the entire training set. In its purest
form, we estimate the gradient from just a single example at a time.

The variant that we recommend for deep learning is a further twist on
stochastic gradient descent using so-called “minibatches”. Minibatch SGD works
identically to SGD, except that we use more than one training example to make
each estimate of the gradient. This technique reduces variance in the estimate
of the gradient, and often makes better use of the hierarchical memory organi-
zation in modern computers.

There is a tradeoff in the choice of the minibatch size B. The reduction of
variance and use of SIMD instructions helps most when increasing B from 1 to
2, but the marginal improvement fades rapidly to nothing. With large B, time
is wasted in reducing the variance of the gradient estimator, that time would be
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Algorithm 2 STOCHASTIC GRADIENT DESCENT

1: for (xi, yi) ∈ Dtrain do
2: . imagine an infinite generator that may repeat
3: . examples (if there is only a finite training set)
4: loss = f(params, xi, yi)
5: d loss wrt params = ... . compute gradient
6: params − = learning rate * d loss wrt params
7: if stopping condition is met then return params
8: end if
9: end for

Algorithm 3 MINIBATCH SGD

1: for (x batch,y batch) ∈ train batches do
2: . imagine an infinite generator
3: . that may repeat examples
4: loss = f(params, x batch, y batch)
5: d loss wrt params = ... . compute gradient
6: params − = learning rate * d loss wrt params
7: if stopping condition is met then return params
8: end if
9: end for

better spent on additional gradient steps. An optimal B is model-, dataset-, and
hardware-dependent, and can be anywhere from 1 to maybe several hundreds.

Note

If you are training for a fixed number of epochs, the minibatch size becomes
important because it controls the number of updates done to your parameters.
Training the same model for 10 epochs using a batch size of 1 yields com-
pletely different results compared to training for the same 10 epochs but with a
batchsize of 20. Keep this in mind when switching between batch sizes and be
prepared to tweak all the other parameters acording to the batch size used.

4 Regularization

Source: LISA lab, University of Montreal. DeepLearning 0.1 Documentation:
Getting Started. http://deeplearning.net/tutorial/gettingstarted.html

There is more to machine learning than optimization. When we train our
model from data we are trying to prepare it to do well on new examples, not the
ones it has already seen. The training loop above for MSGD does not take this
into account, and may overfit the training examples. A way to combat overfitting
is through regularization. There are several techniques for regularization; the
ones we will explain here are L1/L2 regularization and early-stopping.

9

http://deeplearning.net/tutorial/gettingstarted.html


4.1 L1 and L2 regularization

L1 and L2 regularization involve adding an extra term to the loss function,
which penalizes certain parameter configurations. Formally, if our loss function
is:

NLL(θ,D) = −
|D|∑
i=0

logP (Y = y(i)|x(i), θ)

then the regularized loss will be:

E(θ,D) = NLL(θ,D) + λR(θ)

or, in our case
E(θ,D) = NLL(θ,D) + λ‖θ‖pp

where

‖θ‖p =

∑
j=0

|θj |p
 1

p

which is the Lp norm of θ. λ is a hyper-parameter which controls the relative
importance of the regularization parameter. Commonly used values for p are
1 and 2, hence the L1/L2 nomenclature. If p = 2, then the regularizer is also
called “weight decay”.

In principle, adding a regularization term to the loss will encourage smooth
network mappings in a neural network (by penalizing large values of the param-
eters, which decreases the amount of nonlinearity that the network models).
More intuitively, the two terms (NLL and R(θ)) correspond to modelling the
data well (NLL) and having “simple” or “smooth” solutions (R(θ)). Thus, min-
imizing the sum of both will, in theory, correspond to finding the right trade-off
between the fit to the training data and the “generality” of the solution that is
found. To follow Occam’s razor principle, this minimization should find us the
simplest solution (as measured by our simplicity criterion) that fits the training
data.

Note that the fact that a solution is “simple” does not mean that it will
generalize well. Empirically, it was found that performing such regularization
in the context of neural networks helps with generalization, especially on small
datasets.

4.2 Early-Stopping

Early-stopping combats overfitting by monitoring the model’s performance on
a validation set. A validation set is a set of examples that we never use for
gradient descent, but which is also not a part of the test set. The validation
examples are considered to be representative of future test examples. We can
use them during training because they are not part of the test set. If the model’s
performance ceases to improve sufficiently on the validation set, or even degrades
with further optimization, then the heuristic implemented here gives up on much
further optimization.

10



5 Convolutional Neural Networks

Source: LISA lab, University of Montreal. DeepLearning 0.1 Documentation:
Convolutional Neural Networks (LeNet). http://deeplearning.net/tutorial/
lenet.html

5.1 Motivation

Convolutional Neural Networks (CNN) are variants of MLPs which are inspired
from biology. From Hubel and Wiesel’s early work on the cat’s visual cortex [7],
we know there exists a complex arrangement of cells within the visual cortex.
These cells are sensitive to small sub-regions of the input space, called a receptive
field, and are tiled in such a way as to cover the entire visual field. These filters
are local in input space and are thus better suited to exploit the strong spatially
local correlation present in natural images.

Additionally, two basic cell types have been identified: simple cells (S) and
complex cells (C). Simple cells (S) respond maximally to specific edge-like stimu-
lus patterns within their receptive field. Complex cells (C) have larger receptive
fields and are locally invariant to the exact position of the stimulus.

The visual cortex being the most powerful “vision” system in existence, it
seems natural to emulate its behavior. Many such neurally inspired models can
be found in the litterature. To name a few: the NeoCognitron [8], HMAX [9]
and LeNet-5 [10], which will be the focus of this tutorial.

5.2 Sparse Connectivity

CNNs exploit spatially local correlation by enforcing a local connectivity pattern
between neurons of adjacent layers. The input hidden units in the m-th layer are
connected to a local subset of units in the (m−1)-th layer, which have spatially
contiguous receptive fields. We can illustrate this graphically as follows (Fig.
2).

Figure 2: CNN’s sparse connectivity

Imagine that layer m− 1 is the input retina. In the above, units in layer m
have receptive fields of width 3 with respect to the input retina and are thus
only connected to 3 adjacent neurons in the layer below (the retina). Units in
layer m have a similar connectivity with the layer below. We say that their
receptive field with respect to the layer below is also 3, but their receptive field
with respect to the input is larger (it is 5). The architecture thus confines the
learnt “filters” (corresponding to the input producing the strongest response) to
be a spatially local pattern (since each unit is unresponsive to variations outside
of its receptive field with respect to the retina). As shown above, stacking many
such layers leads to “filters” (not anymore linear) which become increasingly
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“global” however (i.e spanning a larger region of pixel space). For example, the
unit in hidden layer m+ 1 can encode a non-linear feature of width 5 (in terms
of pixel space).

5.3 Shared Weights

In CNNs, each sparse filter hi is additionally replicated across the entire vi-
sual field. These “replicated” units form a feature map, which share the same
parametrization, i.e. the same weight vector and the same bias. In Fig. 3, we

Figure 3: Hidden units belonging to the same feature map. Weights of the same
color are shared, i.e. are constrained to be identical.

show 3 hidden units belonging to the same feature map. Weights of the same
color are shared, i.e. are constrained to be identical. Gradient descent can still
be used to learn such shared parameters, and requires only a small change to
the original algorithm. The gradient of a shared weight is simply the sum of the
gradients of the parameters being shared.

Why are shared weights interesting? Replicating units in this way allows for
features to be detected regardless of their position in the visual field. Addition-
ally, weight sharing offers a very efficient way to do this, since it greatly reduces
the number of free parameters to learn. By controlling model capacity, CNNs
tend to achieve better generalization on vision problems.

5.4 Details and Notation

Conceptually, a feature map is obtained by convolving the input image with a
linear filter, adding a bias term and then applying a non-linear function. If we
denote the k-th feature map at a given layer as hk, whose filters are determined
by the weights W k and bias bk, then the feature map hk is obtained as follows
(for tanh non-linearities):

hkij = tanh((W k ∗ x)ij + bk).

Note
Recall the following definition of convolution for a 1D signal.

o[n] = f [n] ∗ g[n] =

∞∑
u=−∞

f [u]g[u− n] =

∞∑
u=−∞

f [n− u]g[u].

This can be extended to 2D as follows:

o[m,n] = f [m,n] ∗ g[m,n] =

∞∑
u=−∞

∞∑
v=−∞

f [u, v]g[u−m, v − n].
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To form a richer representation of the data, hidden layers are composed of a
set of multiple feature maps, {h(k), k = 0..K}. The weights W of this layer can
be parametrized as a 4D tensor (destination feature map index, source feature
map index, source vertical position index, source horizontal position index) and
the biases b as a vector (one element per destination feature map index). We
illustrate this graphically as follows:

Figure 4: Example of a convolutional layer

Here, we show two layers of a CNN, containing 4 feature maps at layer
(m− 1) and 2 feature maps (h0 and h1) at layer m. Pixels (neuron outputs) in
h0 and h1 (outlined as blue and red squares) are computed from pixels of layer
(m− 1) which fall within their 2x2 receptive field in the layer below (shown as
colored rectangles). Notice how the receptive field spans all four input feature
maps. The weights W 0 and W 1 of h0 and h1 are thus 3D weight tensors. The
leading dimension indexes the input feature maps, while the other two refer to
the pixel coordinates.

Putting it all together, W kl
ij denotes the weight connecting each pixel of the

k-th feature map at layer m, with the pixel at coordinates (i, j) of the l-th
feature map of layer (m− 1).

5.5 MaxPooling

Another important concept of CNNs is that of max-pooling, which is a form of
non-linear down-sampling. Max-pooling partitions the input image into a set of
non-overlapping rectangles and, for each such sub-region, outputs the maximum
value.

Max-pooling is useful in vision for two reasons: (1) it reduces the compu-
tational complexity for upper layers and (2) it provides a form of translation
invariance. To understand the invariance argument, imagine cascading a max-
pooling layer with a convolutional layer. There are 8 directions in which one
can translate the input image by a single pixel. If max-pooling is done over
a 2x2 region, 3 out of these 8 possible configurations will produce exactly the
same output at the convolutional layer. For max-pooling over a 3x3 window,
this jumps to 5/8.

Since it provides additional robustness to position, max-pooling is thus a
“smart” way of reducing the dimensionality of intermediate representations.
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5.6 The Full Model: LeNet

Sparse, convolutional layers and max-pooling are at the heart of the LeNet
family of models. While the exact details of the model will vary greatly, the
figure below shows a graphical depiction of a LeNet model.

Figure 5: LeNet model

The lower-layers are composed to alternating convolution and max-pooling
layers. The upper-layers however are fully-connected and correspond to a tra-
ditional MLP (hidden layer + logistic regression). The input to the first fully-
connected layer is the set of all features maps at the layer below.

From an implementation point of view, this means lower-layers operate on
4D tensors. These are then flattened to a 2D matrix of rasterized feature maps,
to be compatible with our previous MLP implementation.

5.7 Tips and Tricks

Choosing Hyperparameters

CNNs are especially tricky to train, as they add even more hyper-parameters
than a standard MLP. While the usual rules of thumb for learning rates and
regularization constants still apply, the following should be kept in mind when
optimizing CNNs.

Number of filters

When choosing the number of filters per layer, keep in mind that computing
the activations of a single convolutional filter is much more expensive than with
traditional MLPs!

Assume layer (l− 1) contains Kl−1 feature maps and M ×N pixel positions
(i.e., number of positions times number of feature maps), and there are Kl filters
at layer l of shape m × n. Then computing a feature map (applying an m × n
filter at all (M −m)× (N − n) pixel positions where the filter can be applied)
costs (M − m) × (N − n) × m × n × Kl−1. The total cost is Kl times that.
Things may be more complicated if not all features at one level are connected
to all features at the previous one.

For a standard MLP, the cost would only be Kl × Kl−1 where there are
Kl different neurons at level l. As such, the number of filters used in CNNs is
typically much smaller than the number of hidden units in MLPs and depends
on the size of the feature maps (itself a function of input image size and filter
shapes).
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Since feature map size decreases with depth, layers near the input layer will
tend to have fewer filters while layers higher up can have much more. In fact, to
equalize computation at each layer, the product of the number of features and
the number of pixel positions is typically picked to be roughly constant across
layers. To preserve the information about the input would require keeping the
total number of activations (number of feature maps times number of pixel
positions) to be non-decreasing from one layer to the next (of course we could
hope to get away with less when we are doing supervised learning). The number
of feature maps directly controls capacity and so that depends on the number
of available examples and the complexity of the task.

Filter Shape

Common filter shapes found in the litterature vary greatly, usually based on
the dataset. Best results on MNIST-sized images (28x28) are usually in the 5x5
range on the first layer, while natural image datasets (often with hundreds of
pixels in each dimension) tend to use larger first-layer filters of shape 12x12 or
15x15.

The trick is thus to find the right level of “granularity” (i.e. filter shapes)
in order to create abstractions at the proper scale, given a particular dataset.

Max Pooling Shape

Typical values are 2x2 or no max-pooling. Very large input images may warrant
4x4 pooling in the lower-layers. Keep in mind however, that this will reduce the
dimension of the signal by a factor of 16, and may result in throwing away too
much information.

6 Denoising Autoencoder

Source: LISA lab, University of Montreal. DeepLearning 0.1 Documentation:
Denoising Autoencoders. http://deeplearning.net/tutorial/dA.html

The Denoising Autoencoder (dA) is an extension of a classical autoencoder
and it was introduced as a building block for deep networks in [12]. We will
start the tutorial with a short discussion on Auto-Encoders.

6.1 Auto-Encoders

See section 4.6 of [13] for an overview of auto-encoders. An autoencoder takes an
input x ∈ [0, 1]d and first maps it (with an encoder) to a hidden representation
y ∈ [0, 1]d

′
through a deterministic mapping, e.g.:

y = s(Wx+ b)

Where s is a non-linearity such as the sigmoid. The latent representation y,
or code is then mapped back (with a decoder) into a reconstruction z of same
shape as x through a similar transformation, e.g.:

z = s(W ′y + b′)

15

http://deeplearning.net/tutorial/dA.html


where ′ does not indicate transpose, and z should be seen as a prediction of
x, given the code y. The weight matrix W ′ of the reverse mapping may be
optionally constrained by W ′ = WT , which is an instance of tied weights. The
parameters of this model (namely W , b, b′ and, if one doesn’t use tied weights,
also W ′) are optimized such that the average reconstruction error is minimized.
The reconstruction error can be measured in many ways, depending on the
appropriate distributional assumptions on the input given the code, e.g., using
the traditional squared error L(x, z) = ‖x − z‖2, or if the input is interpreted
as either bit vectors or vectors of bit probabilities by the reconstruction cross-
entropy defined as :

LH(x, z) = −
d∑
k=1

[xk log zk + (1− xk) log(1− zk)]

The hope is that the code is a distributed representation that captures the
coordinates along the main factors of variation in the data (similarly to how
the projection on principal components captures the main factors of variation
in the data). Because is viewed as a lossy compression of x, it cannot be a good
compression (with small loss) for all x, so learning drives it to be one that is a
good compression in particular for training examples, and hopefully for others as
well, but not for arbitrary inputs. That is the sense in which an auto-encoder
generalizes: it gives low reconstruction error to test examples from the same
distribution as the training examples, but generally high reconstruction error to
uniformly chosen configurations of the input vector.

If there is one linear hidden layer (the code) and the mean squared error
criterion is used to train the network, then the k hidden units learn to project the
input in the span of the first k principal components of the data. If the hidden
layer is non-linear, the auto-encoder behaves differently from PCA, with the
ability to capture multi-modal aspects of the input distribution. The departure
from PCA becomes even more important when we consider stacking multiple
encoders (and their corresponding decoders) when building a deep auto-encoder
[14].

One serious potential issue with auto-encoders is that if there is no other
constraint besides minimizing the reconstruction error, then an auto-encoder
with n inputs and an encoding of dimension at least n could potentially just
learn the identity function, for which many encodings would be useless (e.g.,
just copying the input), i.e., the autoencoder would not differentiate test exam-
ples (from the training distribution) from other input configurations. Surpris-
ingly, experiments reported in [15] nonetheless suggest that in practice, when
trained with stochastic gradient descent, non-linear auto-encoders with more
hidden units than inputs (called overcomplete) yield useful representations (in
the sense of classification error measured on a network taking this representa-
tion in input). A simple explanation is based on the observation that stochastic
gradient descent with early stopping is similar to an L2 regularization of the pa-
rameters. To achieve perfect reconstruction of continuous inputs, a one-hidden
layer auto-encoder with non-linear hidden units needs very small weights in the
first (encoding) layer (to bring the non-linearity of the hidden units in their
linear regime) and very large weights in the second (decoding) layer. With
binary inputs, very large weights are also needed to completely minimize the
reconstruction error. Since the implicit or explicit regularization makes it diffi-
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cult to reach large-weight solutions, the optimization algorithm finds encodings
which only work well for examples similar to those in the training set, which is
what we want. It means that the representation is exploiting statistical regu-
larities present in the training set, rather than learning to replicate the identity
function.

There are different ways that an auto-encoder with more hidden units than
inputs could be prevented from learning the identity, and still capture something
useful about the input in its hidden representation. One is the addition of spar-
sity (forcing many of the hidden units to be zero or near-zero), and it has been
exploited very successfully by many [16, 17]. Another is to add randomness in
the transformation from input to reconstruction. This is exploited in Restricted
Boltzmann Machines (discussed later), as well as in Denoising Auto-Encoders,
discussed below.

Figure 6: Auto-encoder filters

Figure 7: Denoising Auto-encoder filters
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6.2 Denoising Auto-Encoders

The idea behind denoising auto-encoders is simple. In order to force the hidden
layer to discover more robust features and prevent it from simply learning the
identity, we train the autoencoder to reconstruct the input from a corrupted
version of it.

The denoising auto-encoder is a stochastic version of the auto-encoder. In-
tuitively, a denoising auto-encoder does two things: try to encode the input
(preserve the information about the input), and try to undo the effect of a
corruption process stochastically applied to the input of the auto-encoder. The
latter can only be done by capturing the statistical dependencies between the in-
puts. The denoising auto-encoder can be understood from different perspectives
(the manifold learning perspective, stochastic operator perspective, bottom-up
– information theoretic perspective, top-down – generative model perspective),
all of which are explained in [12]. See also section 7.2 of [13] for an overview of
auto-encoders.

In [12], the stochastic corruption process consists in randomly setting some of
the inputs (as many as half of them) to zero. Hence the denoising auto-encoder
is trying to predict the corrupted (i.e. missing) values from the uncorrupted
(i.e., non-missing) values, for randomly selected subsets of missing patterns.
Note how being able to predict any subset of variables from the rest is a suffi-
cient condition for completely capturing the joint distribution between a set of
variables (this is how Gibbs sampling works).

6.3 Applying Denoising Auto-Encoders to MNIST dataset

In [11] the reader can find a Theano code for applying auto-encoders and de-
noising auto-encoders to the MNIST dataset.

The resulted filters when we do not use any noise are shown in Fig. 6. The
filters for 30 percent noise are shown in Fig. 7.

7 Stacked Denoising Autoencoders

The Stacked Denoising Autoencoder (SdA) is an extension of the stacked au-
toencoder [15] and it was introduced in [12].

7.1 Stacked Autoencoders

The denoising autoencoders can be stacked to form a deep network by feeding
the latent representation (output code) of the denoising auto-encoder found on
the layer below as input to the current layer. The unsupervised pre-training
of such an architecture is done one layer at a time. Each layer is trained as a
denoising auto-encoder by minimizing the reconstruction of its input (which is
the output code of the previous layer). Once the first layers are trained, we can
train the -th layer because we can now compute the code or latent representation
from the layer below. Once all layers are pre-trained, the network goes through
a second stage of training called fine-tuning. Here we consider supervised fine-
tuning where we want to minimize prediction error on a supervised task. For
this we first add a logistic regression layer on top of the network (more precisely
on the output code of the output layer). We then train the entire network as
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we would train a multilayer perceptron. At this point, we only consider the
encoding parts of each auto-encoder. This stage is supervised, since now we use
the target class during training.

8 Restricted Boltzmann Machines (RBM)

Source: LISA lab, University of Montreal. DeepLearning 0.1 Documentation:
Restricted Boltzmann Machines (RBM). http://deeplearning.net/tutorial/
rbm.html

8.1 Energy-Based Models (EBM)

Energy-based models associate a scalar energy to each configuration of the vari-
ables of interest. Learning corresponds to modifying that energy function so
that its shape has desirable properties. For example, we would like plausible or
desirable configurations to have low energy. Energy-based probabilistic models
define a probability distribution through an energy function, as follows:

p(x) =
e−E(x)

Z
(1)

The normalizing factor is called the partition function by analogy with physical
systems.

Z =
∑
x

e−E(x)

An energy-based model can be learnt by performing (stochastic) gradient de-
scent on the empirical negative log-likelihood of the training data. As for the
logistic regression we will first define the log-likelihood and then the loss function
as being the negative log-likelihood.

L(θ,D) =
1

N

∑
x(i)∈D

log p(x(i))

`(θ,D) = −L(θ,D)

using the stochastic gradient −∂ log p(x(i))
∂θ , where θ are the parameters of the

model.

8.2 EBMs with Hidden Units

In many cases of interest, we do not observe the example x fully, or we want to
introduce some non-observed variables to increase the expressive power of the
model. So we consider an observed part (still denoted x here) and a hidden part
h. We can then write:

P (x) =
∑
h

P (x, h) =
∑
h

e−E(x,h)

Z
.

In such cases, to map this formulation to one similar to (1), we introduce the
notation (inspired from physics) of free energy, defined as follows:

F(x) = − log
∑
h

e−E(x,h)
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which allows us to write,

P (x) =
e−F(x)

Z
whith Z =

∑
x

e−F(x)

The data negative log-likelihood gradient then has a particularly interesting
form:

− ∂ log p(x)

∂θ
=
∂F(x)

∂θ
−
∑
x̃

p(x̃)
∂F(x̃)

∂θ
(2)

Notice that the above gradient contains two terms, which are referred to as the
positive and negative phase. The terms positive and negative do not refer to
the sign of each term in the equation, but rather reflect their effect on the prob-
ability density defined by the model. The first term increases the probability
of training data (by reducing the corresponding free energy), while the second
term decreases the probability of samples generated by the model.

It is usually difficult to determine this gradient analytically, as it involves

the computation of EP

[
∂F(x)
∂θ

]
. This is nothing less than an expectation over

all possible configurations of the input x (under the distribution P formed by
the model).

The first step in making this computation tractable is to estimate the ex-
pectation using a fixed number of model samples. Samples used to estimate the
negative phase gradient are referred to as negative particles, which are denoted
as N . The gradient can then be written as:

− ∂ log p(x)

∂θ
≈ ∂F(x)

∂θ
− 1

|N |
∑
x̃∈N

∂F(x̃)

∂θ
(3)

where we would ideally like elements x̃ of N to be sampled according to P (i.e.
we are doing Monte-Carlo). With the above formula, we almost have a pratical,
stochastic algorithm for learning an EBM. The only missing ingredient is how
to extract these negative particles N . While the statistical literature abounds
with sampling methods, Markov Chain Monte Carlo methods are especially well
suited for models such as the Restricted Boltzmann Machines (RBM), a specific
type of EBM.

8.3 Restricted Boltzmann Machines (RBM)

Boltzmann Machines (BMs) are a particular form of log-linear Markov Random
Field (MRF), i.e., for which the energy function is linear in its free parameters.
To make them powerful enough to represent complicated distributions (i.e., go
from the limited parametric setting to a non-parametric one), we consider that
some of the variables are never observed (they are called hidden). By having
more hidden variables (also called hidden units), we can increase the model-
ing capacity of the Boltzmann Machine (BM). Restricted Boltzmann Machines
further restrict BMs to those without visible-visible and hidden-hidden connec-
tions. A graphical depiction of an RBM is shown in Fig. 8.

The energy function of an RBM is defined as:

E(x, h) = −bTx− cTx− hTWx (4)
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Figure 8: Restricted Boltzmann Machine (RBM)

where W represents the weights connecting hidden and visible units and b and
c are the offsets of the visible and hidden layers respectively.

This translates directly to the following free energy formula:

F(x) = −bTx−
∑
i

log
∑
hi

ehi(ci+Wix).

Because of the specific structure of RBMs, visible and hidden units are condi-
tionally independent given one-another. Using this property, we can write:

p(h|x) =
∏
i

p(hi|x)

p(x|h) =
∏
i

p(xi|h).

8.4 RBMs with binary units

In the commonly studied case of using binary units (where xj and hi ∈ {0, 1}),
we obtain from Eq. (4) and (1), a probabilistic version of the usual neuron
activation function:

P (hi = 1|x) = sigmoid(ci +Wix)

P (xj = 1|h) = sigmoid(bj +WT
j x)

The free energy of an RBM with binary units further simplifies to:

F(x) = −bTx−
∑
i

log(1 + eci+Wix). (5)

Update Equations with Binary Units

Combining Eqs. (3) with (5), we obtain the following log-likelihood gradients
for an RBM with binary units:

−∂ log p(x)

∂Wij
= Ex[p(hi|x) · xj ]− x(i)j · sigmoid(Wi · x(i) + ci)

−∂ log p(x)

∂ci
= Ex[p(hi|x)]− sigmoid(Wi · x(i))

−∂ log p(x)

∂bj
= Ex[p(xj |h)]− x(i)j

For a more detailed derivation of these equations, we refer the reader to [19],
or to section 5 of [13]. We will however not use these formulas, but rather get
the gradient using Theano T.grad from equation (2).
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8.5 Sampling in an RBM

Samples of p(x) can be obtained by running a Markov chain to convergence,
using Gibbs sampling as the transition operator.

Gibbs sampling of the joint of N random variables S = (S1, . . . , SN ) is done
through a sequence of N sampling sub-steps of the form Si ∼ p(Si|S−i) where
S−i contains the N − 1 other random variables in S excluding Si.

For RBMs, S consists of the set of visible and hidden units. However, since
they are conditionally independent, one can perform block Gibbs sampling. In
this setting, visible units are sampled simultaneously given fixed values of the
hidden units. Similarly, hidden units are sampled simultaneously given the
visibles. A step in the Markov chain is thus taken as follows:

h(n+1) ∼ sigmoid(WTx(n) + c)

x(n+1) ∼ sigmoid(Wh(n+1) + b),

where h(n) refers to the set of all hidden units at the n-th step of the Markov

chain. What it means is that, for example, h
(n+1)
i is randomly chosen to be

1 (versus 0) with probability sigmoid(WT
i x

(n) + ci), and similarly, x
(n+1)
j is

randomly chosen to be 1 (versus 0) with probability sigmoid(W·jh
(n+1) + bj).

This can be illustrated graphically:

Figure 9: Markov Chain for a Restricted Boltzmann Machine

As t → ∞, samples (x(t), h(t)) are guaranteed to be accurate samples of
p(x, h).

In theory, each parameter update in the learning process would require run-
ning one such chain to convergence. It is needless to say that doing so would
be prohibitively expensive. As such, several algorithms have been devised for
RBMs, in order to efficiently sample from p(x, h) during the learning process.

Contrastive Divergence (CD-k)

Contrastive Divergence uses two tricks to speed up the sampling process:

• since we eventually want p(x) ≈ ptrain(x) (the true, underlying distribu-
tion of the data), we initialize the Markov chain with a training example
(i.e., from a distribution that is expected to be close to p, so that the chain
will be already close to having converged to its final distribution p).

• CD does not wait for the chain to converge. Samples are obtained af-
ter only k-steps of Gibbs sampling. In pratice, has been shown to work
surprisingly well.
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Persistent CD

Persistent CD [20] uses another approximation for sampling from p(x, h). It
relies on a single Markov chain, which has a persistent state (i.e., not restarting
a chain for each observed example). For each parameter update, we extract new
samples by simply running the chain for k-steps. The state of the chain is then
preserved for subsequent updates.

The general intuition is that if parameter updates are small enough compared
to the mixing rate of the chain, the Markov chain should be able to “catch up”
the changes in the model.

9 Deep Belief Networks

Source: LISA lab, University of Montreal. DeepLearning 0.1 Documentation:
Deep Belief Networks. http://deeplearning.net/tutorial/DBN.html

9.1 Deep Belief Networks

Hinton and Salakhutdinov [14] showed that RBMs can be stacked and trained
in a greedy manner to form so-called Deep Belief Networks (DBN). DBNs are
graphical models which learn to extract a deep hierarchical representation of
the training data. They model the joint distribution between observed vector x
and the ` hidden layers hk as follows:

P (x, h1, . . . , h`) =

(
`−2∏
k=0

P (hk|hk+1)

)
P (h`−1|h`)

where x = h0, P (hk−1|hk) is a conditional distribution for the visible units
conditioned on the hidden units of the RBM at level k, and P (h`−1|h`) is the
visible-hidden joint distribution in the top-level RBM. This is illustrated in Fig.
10.

Figure 10: A Deep Belief Network

The principle of greedy layer-wise unsupervised training can be applied to
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DBNs with RBMs as the building blocks for each layer [14, 15]. The process is
as follows:

1. Train the first layer as an RBM that models the raw input x = h(0) as its
visible layer.

2. Use that first layer to obtain a representation of the input that will be
used as data for the second layer. Two common solutions exist. This
representation can be chosen as being the mean activations p(h(1) = 1|h(0))
or samples of p(h(1)|h(0)).

3. Train the second layer as an RBM, taking the transformed data (samples
or mean activations) as training examples (for the visible layer of that
RBM).

4. Iterate (2 and 3) for the desired number of layers, each time propagating
upward either samples or mean values.

5. Fine-tune all the parameters of this deep architecture with respect to a
proxy for the DBN log-likelihood, or with respect to a supervised training
criterion (after adding extra learning machinery to convert the learned
representation into supervised predictions, e.g. a linear classifier).

In the online tutorial [21], the focus is on fine-tuning via supervised gradient
descent. Specifically, a logistic regression classifier is implemented to classify the
input x based on the output of the last hidden layer h(`) of the DBN. Fine-tuning
is then performed via supervised gradient descent of the negative log-likelihood
cost function. Since the supervised gradient is only non-null for the weights and
hidden layer biases of each layer (i.e. null for the visible biases of each RBM),
this procedure is equivalent to initializing the parameters of a deep MLP with
the weights and hidden layer biases obtained with the unsupervised training
strategy.
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